Skip to main content
Log in

Polymer/ceramic co-continuous nanofiber membranes via room-curable organopolysilazane for improved lithium-ion battery performance

  • Batteries and Supercapacitors
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polyacrylonitrile (PAN) and ambient temperature-curable organopolysilazane were combined to successfully fabricate PAN/polymer-derived ceramic (PDC) hybrid nanofiber separator using a single-step electrospinning process. The amount of added precursor was varied from 10 to 30% to characterize the effects of various loadings on the mechanical, thermal properties, and electrochemical performance on the hybrid membranes. TEM images reveal that all composite fibers have a thin (~5 nm) ceramic-rich sheath layer surrounding each fiber. In addition, there is also ceramic present inside the fiber with the ceramic forming continuous network within the nanofiber at high concentrations. The interconnected ceramic network within the fiber disrupts the polymers ability to properly crystallize, leading to an increase in amorphous regions with an increase in ceramic inclusion. The presence of the ceramic on the surface of the membrane in addition to the increased amorphous regions leads to excellent ionic conductivity and cycling performance. The 30 wt% PDC sample has an ionic conductivity of 1.05 mS cm−1 compared to 0.29 mS cm−1 of pristine PAN separator. All separators with additional PDC content showed increased initial capacity and capacity retention at 0.2C charging and discharging rate, with the 90:10, 80:20, and 70:30 wt% of PAN:PDC showing 89, 90 and 93% capacity retention of graphite/LiCoO2 full cells over 100 cycles, respectively. In rate capability testing, PAN/PDC fibers demonstrated increased capacity retention even at increased charge rates. The results suggest that the increased ionic conductivity and wetting behavior by both the ceramics within the membrane and on the surface of the membrane are more correlated to an increase in capacity retention and rate capability than the porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Arora P, Zhang Z (2004) Battery separators. Chem Rev 104:4419–4462. doi:10.1021/cr020738u

    Article  Google Scholar 

  2. Huang X (2010) Separator technologies for lithium-ion batteries. J Solid State Electrochem 15:649–662. doi:10.1007/s10008-010-1264-9

    Article  Google Scholar 

  3. Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164:351–364. doi:10.1016/j.jpowsour.2006.10.065

    Article  Google Scholar 

  4. Cavaliere S, Subianto S, Savych I et al (2011) Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci 4:4761–4785. doi:10.1039/C1EE02201F

    Article  Google Scholar 

  5. Ryou M-H, Lee DJ, Lee J-N et al (2012) Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators. Adv Energy Mater 2:645–650. doi:10.1002/aenm.201100687

    Article  Google Scholar 

  6. Miao J, Miyauchi M, Simmons TJ et al (2010) Electrospinning of nanomaterials and applications in electronic components and devices. J Nanosci Nanotechnol 10:5507–5519

    Article  Google Scholar 

  7. Costa CM, Nunes-Pereira J, Rodrigues LC et al (2013) Novel poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blends for battery separators in lithium-ion applications. Electrochim Acta 88:473–476. doi:10.1016/j.electacta.2012.10.098

    Article  Google Scholar 

  8. Yanilmaz M, Lu Y, Li Y, Zhang X (2015) SiO2/polyacrylonitrile membranes via centrifugal spinning as a separator for Li-ion batteries. J Power Sources 273:1114–1119. doi:10.1016/j.jpowsour.2014.10.015

    Article  Google Scholar 

  9. Jiang H, Ge Y, Fu K et al (2014) Centrifugally-spun tin-containing carbon nanofibers as anode material for lithium-ion batteries. J Mater Sci 50:1094–1102. doi:10.1007/s10853-014-8666-5

    Article  Google Scholar 

  10. Vazquez B, Vasquez H, Lozano K (2012) Preparation and characterization of polyvinylidene fluoride nanofibrous membranes by forcespinning™. Polym Eng Sci 52:2260–2265. doi:10.1002/pen.23169

    Article  Google Scholar 

  11. Weng B, Xu F, Alcoutlabi M et al (2015) Fibrous cellulose membrane mass produced via forcespinning® for lithium-ion battery separators. Cellulose 22:1311–1320. doi:10.1007/s10570-015-0564-8

    Article  Google Scholar 

  12. Lee J, Lee C-L, Park K, Kim I-D (2014) Synthesis of an Al2O3-coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium ion batteries. J Power Sources 248:1211–1217. doi:10.1016/j.jpowsour.2013.10.056

    Article  Google Scholar 

  13. Zhang L, Aboagye A, Kelkar A et al (2013) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 49:463–480. doi:10.1007/s10853-013-7705-y

    Article  Google Scholar 

  14. Qiu Y, Geng Y, Yu J, Zuo X (2013) High-capacity cathode for lithium-ion battery from LiFePO4/(C + Fe2P) composite nanofibers by electrospinning. J Mater Sci 49:504–509. doi:10.1007/s10853-013-7727-5

    Article  Google Scholar 

  15. Yanilmaz M, Zhang X (2015) Polymethylmethacrylate/polyacrylonitrile membranes via centrifugal spinning as separator in Li-ion batteries. Polymers 7:629–643. doi:10.3390/polym7040629

    Article  Google Scholar 

  16. Hao J, Lei G, Li Z et al (2013) A novel polyethylene terephthalate nonwoven separator based on electrospinning technique for lithium ion battery. J Membr Sci 428:11–16. doi:10.1016/j.memsci.2012.09.058

    Article  Google Scholar 

  17. Cho T-H, Tanaka M, Onishi H et al (2008) Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery. J Power Sources 181:155–160. doi:10.1016/j.jpowsour.2008.03.010

    Article  Google Scholar 

  18. Jung H-R, Ju D-H, Lee W-J, Zhang X (2009) Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes. Electrochim Acta 54:3630–3637. doi:10.1016/j.electacta.2009.01.039

    Article  Google Scholar 

  19. Yang C, Jia Z, Guan Z, Wang L (2009) Polyvinylidene fluoride membrane by novel electrospinning system for separator of Li-ion batteries. J Power Sources 189:716–720. doi:10.1016/j.jpowsour.2008.08.060

    Article  Google Scholar 

  20. Liang Y, Cheng S, Zhao J et al (2013) Heat treatment of electrospun Polyvinylidene fluoride fibrous membrane separators for rechargeable lithium-ion batteries. J Power Sources 240:204–211. doi:10.1016/j.jpowsour.2013.04.019

    Article  Google Scholar 

  21. Jeon KS, Nirmala R, Navamathavan R et al (2014) The study of efficiency of Al2O3 drop coated electrospun meta-aramid nanofibers as separating membrane in lithium-ion secondary batteries. Mater Lett 132:384–388. doi:10.1016/j.matlet.2014.06.117

    Article  Google Scholar 

  22. Miao Y-E, Zhu G-N, Hou H, Xia Y-Y (2013) Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. J Power Sources 226:82–86. doi:10.1016/j.jpowsour.2012.10.027

    Article  Google Scholar 

  23. Gopalan AI, Santhosh P, Manesh KM et al (2008) Development of electrospun PVdF–PAN membrane-based polymer electrolytes for lithium batteries. J Membr Sci 325:683–690. doi:10.1016/j.memsci.2008.08.047

    Article  Google Scholar 

  24. Cho TH, Sakai T, Tanase S, Kimura K (2007) Electrochemical performances of polyacrylonitrile nanofiber-based nonwoven separator for lithium-ion battery. Electrochem Solid-State Lett 10:A159. doi:10.1149/1.2730727

    Article  Google Scholar 

  25. Choi E-S, Lee S-Y (2011) Particle size-dependent, tunable porous structure of a SiO2/poly(vinylidene fluoride-hexafluoropropylene)-coated poly(ethylene terephthalate) nonwoven composite separator for a lithium-ion battery. J Mater Chem 21:14747–14754. doi:10.1039/C1JM12246K

    Article  Google Scholar 

  26. Jeong H-S, Choi E-S, Lee S-Y (2012) Composition ratio-dependent structural evolution of SiO2/poly(vinylidene fluoride-hexafluoropropylene)-coated poly(ethylene terephthalate) nonwoven composite separators for lithium-ion batteries. Electrochim Acta 86:317–322. doi:10.1016/j.electacta.2012.03.126

    Article  Google Scholar 

  27. Liu H, Xu J, Guo B, He X (2014) Effect of Al2O3/SiO2 composite ceramic layers on performance of polypropylene separator for lithium-ion batteries. Ceram Int 40:14105–14110. doi:10.1016/j.ceramint.2014.05.142

    Article  Google Scholar 

  28. Jeong H-S, Hong SC, Lee S-Y (2010) Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly(vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries. J Membr Sci 364:177–182. doi:10.1016/j.memsci.2010.08.012

    Article  Google Scholar 

  29. Jeong H-S, Choi E-S, Lee S-Y, Kim JH (2012) Evaporation-induced, close-packed silica nanoparticle-embedded nonwoven composite separator membranes for high-voltage/high-rate lithium-ion batteries: advantageous effect of highly percolated, electrolyte-philic microporous architecture. J Membr Sci 415–416:513–519. doi:10.1016/j.memsci.2012.05.038

    Article  Google Scholar 

  30. Liu H, Xu J, Guo B, He X (2014) Preparation and performance of silica/polypropylene composite separator for lithium-ion batteries. J Mater Sci 49:6961–6966. doi:10.1007/s10853-014-8401-2

    Article  Google Scholar 

  31. Choi J-A, Kim SH, Kim D-W (2010) Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators. J Power Sources 195:6192–6196. doi:10.1016/j.jpowsour.2009.11.020

    Article  Google Scholar 

  32. Huang X, Bahroloomi D, Xiao X (2013) A multilayer composite separator consisting of non-woven mats and ceramic particles for use in lithium ion batteries. J Solid State Electrochem 18:133–139. doi:10.1007/s10008-013-2254-5

    Article  Google Scholar 

  33. Huang X (2011) Development and characterization of a bilayer separator for lithium ion batteries. J Power Sources 196:8125–8128. doi:10.1016/j.jpowsour.2011.05.054

    Article  Google Scholar 

  34. Ji L, Zhang X (2008) Ultrafine polyacrylonitrile/silica composite fibers via electrospinning. Mater Lett 62:2161–2164. doi:10.1016/j.matlet.2007.11.051

    Article  Google Scholar 

  35. Naffakh M, Díez-Pascual AM (2014) Thermoplastic polymer nanocomposites based on inorganic fullerene-like nanoparticles and inorganic nanotubes. Inorganics 2:291–312. doi:10.3390/inorganics2020291

    Article  Google Scholar 

  36. Choi SW, Kim JR, Jo SM, Lee WS (2005) Electrochemical and spectroscopic properties of electrospun PAN-based fibrous polymer electrolytes. J Electrochem Soc 152:A989–A995. doi:10.1149/1.1887166

    Article  Google Scholar 

  37. Li J, Huang X, Chen L (2000) X-ray diffraction and vibrational spectroscopic studies on PAN–LiTFSI polymer electrolytes. J Electrochem Soc 147:2653–2657. doi:10.1149/1.1393585

    Article  Google Scholar 

  38. Chung SH, Wang Y, Persi L et al (2001) Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides. J Power Sources 97–98:644–648. doi:10.1016/S0378-7753(01)00748-0

    Article  Google Scholar 

  39. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458. doi:10.1038/28818

    Article  Google Scholar 

  40. Xu L, Xu F, Chen F et al (2011) Improvement in comprehensive properties of poly(methyl methacrylate)-based gel polymer electrolyte by a core-shell poly(methyl methacrylate)-grafted ordered mesoporous silica. J Nanomater 2012:e457967. doi:10.1155/2012/457967

    Google Scholar 

  41. An M-Y, Kim H-T, Chang D-R (2014) Multilayered separator based on porous polyethylene layer, Al2O3 layer, and electro-spun PVdF nanofiber layer for lithium batteries. J Solid State Electrochem 18:1807–1814. doi:10.1007/s10008-014-2412-4

    Article  Google Scholar 

  42. Huang X, Hitt J (2013) Lithium ion battery separators: development and performance characterization of a composite membrane. J Membr Sci 425–426:163–168. doi:10.1016/j.memsci.2012.09.027

    Article  Google Scholar 

  43. Zhu X, Jiang X, Ai X et al (2015) A highly thermostable ceramic-grafted microporous polyethylene separator for safer lithium-ion batteries. ACS Appl Mater Interfaces 7:24119–24126. doi:10.1021/acsami.5b07230

    Article  Google Scholar 

Download references

Acknowledgement

Funding was provided by AZ Electronic Materials (Cornell OSP No. 70529), and Axium Nanofibers (Cornell OSP No. 70530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Lak Joo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, S.A., Park, J.H., Williams, B.P. et al. Polymer/ceramic co-continuous nanofiber membranes via room-curable organopolysilazane for improved lithium-ion battery performance. J Mater Sci 52, 3657–3669 (2017). https://doi.org/10.1007/s10853-016-0574-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0574-4

Keywords

Navigation