Skip to main content
Log in

Slip dislocation and twin nucleation mechanisms in hcp metals

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new nucleation mechanism is proposed for \( \{ 10\bar{1}1\} \) deformation twin in hcp materials. The mechanism is based on the results of atomistic computer simulations. It was found that under high shear stress applied on \( \{ 10\bar{1}1\} \) plane (the stress level is about 7 % of shear modulus), the core of a slip dislocation can transform to a twin embryo. The transformation and subsequent twin growth are accompanied by nucleation and migration of interfacial defects including disconnections and stacking faults. The paper provides the analysis of the nature of these defects and describes the reactions between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Christian JW, Mahajan S (1995) Deformation twinning. Prog Mater Sci 39:1–157

    Article  Google Scholar 

  2. Komninou P, Kehagias T, Karakostas T, Antonopoulos JG, Braisaz T, Nouet G, Serra A (2000) Electron microscopy of defects in hexagonal materials. In: Lepinoux J et al (eds) Multiscale phenomena in plasticity. Kluwer, Boston, pp 215–226

    Google Scholar 

  3. Paton NE, Backofen WA (1970) Plastic deformation of titanium at elevated temperatures. Metall Trans 1:2839–2847

    Google Scholar 

  4. Meng L, Yang P, Xie Q, Mao W (2008) Analyses on compression twins in magnesium. Mater Trans 49:710–714

    Article  Google Scholar 

  5. Serra A, Pond RC, Bacon DJ (1991) Computer simulation of the structure and mobility of twinning dislocations in H.C.P. metals. Acta Metall Mater 39:1469–1480

    Article  Google Scholar 

  6. Kasukabe Y, Yamada Y, Peng JL, Bursill LA (1993) Structure analysis of twins \( \{ 1\bar{1}01\} \) in evaporated titanium thin films. Philos Mag A 68:587–598

  7. Kasukabe Y, Yamada Y, Peng JL, Bursill LA (1993) Characterization of twin \( \{ 1\bar{1}01\} \)dislocation structures in evaporated titanium thin films by high-resolution transmission electron microscopy. Philos Mag Lett 67:361–368

  8. Pond RC, Bacon DJ, Serra A (1995) Interfacial structure of twins \( \{ 10\bar{1}1\} \)and twinning dislocations in titanium. Philos Mag Lett 71:275–284

  9. Serra A, Bacon DJ, Pond RC (1988) The crystallography and core structure of twinning dislocations in hcp metals. Acta Metall 36:3183–3203

    Article  Google Scholar 

  10. Bursill LA, Peng JL, Fan XD, Kasukabe Y, Yamada Y (1995) \( \{ 10\bar{1}1\} \) twin dislocation structures in evaporated titanium thin films. Philos Mag Lett 71:269–273

  11. Morris JR, Ye YY, Ho M, Chan CT, Yoo MH (1995) Structures and energies of compression twin boundaries in hcp Ti and Zr. Philos Mag A 72:751–753

    Article  Google Scholar 

  12. Wang YC, Ping DH, Li DX, Ye HQ (1996) A high-resolution transmission electron microscopy study of the \( \{ 10\bar{1}1\} \) twin-boundary structure in alpha-Ti. Philos Mag Lett 74:367-373

  13. Braisaz T, Ruterana P, Nouet G, Komninou P, Kehaigas T, Karakostas T, Poulopoulos P, Aggelakeris M, Flevaris N, Serra A (1998) Nanocrystalline thin titanium films grown on potassium bromide single crystals. Thin Solid Films 19:140–143

    Article  Google Scholar 

  14. Serra A, Bacon DJ (1995) Computer simulation of screw dislocation interactions with twin boundaries in H.C.P. metals. Acta metall mater 43:4465–4481

    Article  Google Scholar 

  15. Wang J, Beyerlein IJ, Hirth JP (2012) Nucleation of elementary \( \{ 10\bar{1}1\} \) and \( \{ \bar{1}013\} \) twinning dislocations at a twin boundary in hexagonal close-packed crystals. Model Sim Mater Sci Eng 20:024001

  16. Barrett CD, El Kadiri H (2014) Impact of deformation faceting on \( \{ 10\bar{1}2\} \), \( \{ 10\bar{1}1\} \) and \( \{ 10\bar{1}3\} \) embryonic twin nucleation in hexagonal close-packed metals. Acta Mater 70:137-161

  17. Mendelson S (1969) Zonal dislocations and twin lamellae in h.c.p Metals. Mater Sci Eng 4:231–242

    Article  Google Scholar 

  18. Capolungo L, Beyerlein IJ (2008) Nucleation and stability of twins in hcp metals. Phys Rev B 78:024117

    Article  Google Scholar 

  19. Sun DY, Mendelev MI, Becker CA, Kudin K, Haxhimali T, Asta M (2006) Crystal-melt interfacial free energies in hcp metals: a molecular dynamics study of Mg. Phys Rev B 73:024116

    Article  Google Scholar 

  20. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117:1–19

    Article  Google Scholar 

  21. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell Simul Mater Sci Eng 18:015012

    Article  Google Scholar 

  22. Hirth JP, Lothe J (1968) Theory of dislocations. McGraw-Hill, New York

    Google Scholar 

  23. Vitek V (1992) Structure of dislocation cores in metallic materials and its impact on their plastic behavior. Progr Mater Sci 36:1–27

    Article  Google Scholar 

  24. Yasi JA, Nogaret T, Trinkle DR, Qi Y, Hector LG Jr, Curtin WA (2009) Basal and prism dislocation cores in magnesium: comparison of first-principles and embedded-atom-potential methods predictions. Modell Simul Mater Sci Eng 17:055012

    Article  Google Scholar 

  25. Barrett CD, El Kadiri H (2014) Fundamentals of mobile tilt grain boundary faceting. Scripta Mater 84–85:15–18

    Article  Google Scholar 

  26. Pinsook U, Ackland GJ (1998) Simulation of martensitic microstructural evolution in zirconium. Phys Rev B 58:11252–11257

    Article  Google Scholar 

  27. Pinsook U, Ackland GJ (2000) Atomistic simulation of shear in a martensitic twinned microstructure. Phys Rev B 62:5427–5434

    Article  Google Scholar 

  28. Ackland GJ (2005) Simulations of martensitic microstructure. J Mater Sci 40:3205–3208. doi:10.1007/s10853-005-2685-1

    Article  Google Scholar 

  29. Wang J, Beyerlein IJ, Hirth JP, Tome CN (2011) Twinning dislocations on \( \{ 10\bar{1}1\} \) and \( \{ 10\bar{1}3\} \) planes in hexagonal close-packed crystals. Acta Mater 59:3990–4001

Download references

Acknowledgements

The financial supports from Czech Science Foundation (Project 16-14599S), the Spanish MINECO (FIS2015-69017-P), and Ministry of Education, Youth and Sports of the Czech Republic under Project CEITEC 2020 (LQ1601) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy Ostapovets.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostapovets, A., Serra, A. Slip dislocation and twin nucleation mechanisms in hcp metals. J Mater Sci 52, 533–540 (2017). https://doi.org/10.1007/s10853-016-0351-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0351-4

Keywords

Navigation