Skip to main content
Log in

Porous asymmetric SiO2-g-PMMA nanoparticles produced by phase inversion

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new kind of asymmetric organic–inorganic porous structure has been proposed. Asymmetric lattices of polymer grafted silica nanoparticles were manufactured by casting and phase inversion in water. Silica nanoparticles were first functionalized with 3-(dimethylethoxysilyl)propyl-2-bromoisobutyrate, followed by grafting of poly(methylmethacrylate) (PMMA) segments, performed by atom-transfer radical polymerization. Mechanically stable self-standing films were prepared by casting a dispersion of functionalized nanoparticles in different solvents and immersion in water. The resulting asymmetrically porous morphology and nanoparticle assembly was characterized by scanning electron and atomic force microscopy. The PMMA functionalized SiO2 hybrid material in acetone or acetone/dioxane led to the best-assembled structures. Porous asymmetric membranes were prepared by adding free PMMA and PMMA terminated with hydrophilic hydroxyl group. Nitrogen flow of 2800 L m−2 h−1 was measured at 1.3 bar demonstrating the porosity and potential application for membrane technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nunes SP, Inoue T (1996) Evidence for spinodal decomposition and nucleation and growth mechanisms during membrane formation. J Membr Sci 111:93–103

    Article  Google Scholar 

  2. Marques DS, Vainio U, Chaparro NM, Calo VM, Bezahd AR, Pitera JW, Peinemann K-V, Nunes SP (2013) Self-assembly in casting solutions of block copolymer membranes. Soft Matter 9:5557

    Article  Google Scholar 

  3. Nunes SP, Sougrat R, Hooghan B, Anjum DH, Behzahd AR, Zhao L, Pradeep N, Pinnau I, Vainio U, Peinemann K-V (2010) Ultraporous films with uniform nano-channels by block copolymer micelles assembly. Macromolecules 43:8079–8085

    Article  Google Scholar 

  4. Nunes SP, Karunakaran M, Pradeep N, Behzad AR, Hooghan B, Sougrat R, He H, Peinemann K-V (2011) From micelle supramolecular assemblies in selective solvents to isoporous membranes. Langmuir 27:10184–10190

    Article  Google Scholar 

  5. Nunes SP, Behzad AR, Hooghan B, Sougrat R, Karunakaran M, Pradeep N, Vainio U, Peinemann K-V (2011) Switchable pH-responsive polymeric membranes prepared via block copolymer micelle assembly. ACS Nano 5:3516–3522

    Article  Google Scholar 

  6. Madhavan P, Peinemann K-V, Nunes SP (2013) Complexation-tailored morphology of asymmetric block copolymer membranes. ACS Appl Mater Interfaces 5:7152–7159

    Article  Google Scholar 

  7. Lin CH, Jiang L, Chai YH, Xiao H, Chen SJ, Tsai HL (2010) A method to fabricate 2D nanoparticle arrays. Appl Phys A 98:855–860

    Article  Google Scholar 

  8. Yabuki S, Mitzutani F (1997) d-Fructose sensing electrode based on electron transfer of d-fructose dehydrogenase at colloidal gold-enzyme modified electrode. Electroanalysis 9:23–25

    Article  Google Scholar 

  9. Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 1:18–52

    Article  Google Scholar 

  10. Huang C-H, Lin H-Y (2012) Fabrication of 2D metal nanoparticle array encapsulated by anodic aluminum oxide and its applications to surface-enhanced Raman scattering. Proc SPIE 8351:83512A

    Article  Google Scholar 

  11. Vecchi G, Giannini V, Gomez J (2009) Rivas, shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. Phys Rev Lett 102:146807

    Article  Google Scholar 

  12. Lahav M, Shipway AN, Willner I, Nielsen M, Stoddart JF (2000) J Electroanal Chem 482:217–221

    Article  Google Scholar 

  13. Mokkapati S, Beck FJ, Polman A, Catchpole KR (2009) Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells. Appl Phys Lett 95:53115

    Article  Google Scholar 

  14. Varon M, Beleggia M, Kasama T, Harrison RJ, Dunin-Borkowski RE, Puntes VF, Frandsen C (2013) Dipolar magnetism in ordered and disordered low-dimensional nanoparticle assemblies. Scientific Reports 3:1234

    Article  Google Scholar 

  15. Jones MR, Macfarlane RJ, Lee B, Zhang J, Young KL, Senesi AJ, Mirkin CA (2010) DNA-nanoparticle superlattices formed from anisotropic building blocks. Nat Mater 9:913–917

    Google Scholar 

  16. Okuda M, Kobayashi Y, Suzuki K, Sonoda K, Kondoh T, Wagawa A, Kondo A, Yoshimura H (2005) Self-organized inorganic nanoparticle arrays on protein lattices. Nano Lett 5:991–993

    Article  Google Scholar 

  17. Xiong Shisheng, Miao Xiaoyu, Spencer Jeffrey, Khripin Constantine, Luk Ting S, Jeffrey C (2010) Brinker integration of a close-packed quantum dot monolayer with a photonic-crystal cavity via interfacial self- assembly and transfer. Small 6:2126–2129

    Article  Google Scholar 

  18. Lin XM, Jaeger HM, Sorensen CM, Klabunde KJ (2001) Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates. J. Phys Chem B 105:3353–3357

    Google Scholar 

  19. Smith DK, Goodfellow B, Smilgies DM, Korgel BA (2009) Self-assembled simple hexagonal ab2 binary nanocrystal superlattices: sem, gisaxs, and defectsj. Am Chem Soc 131:3281–3290

    Article  Google Scholar 

  20. Xiong S, Dunphy DR, Wilkinson DC, Jiang Z, Strzalka J, Wang J, Su Y, de Pablo JJ, Jeffrey Brinker C (2013) Revealing the interfacial self-assembly pathway of large-scale, highly-ordered, nanoparticle/polymer monolayer arrays at an air/water interface. Nano Lett 13:1041–1046

    Article  Google Scholar 

  21. Lin Y, Skaff H, Boker A, Dinsmore AD, Emrick T, Russell TP (2003) Ultrathin Cross-Linked Nanoparticle Membranes. J Am Chem Soc 125:12690–12691

    Article  Google Scholar 

  22. Mueggenburg KE, Lin X-M, Goldsmith RH, Jaeger HM (2007) Elastic membranes of close-packed nanoparticle arrays. Nat Mater 6:656–660

    Google Scholar 

  23. Teng X, Liang X, Rahman S, Yang H (2005) Porous nanoparticle membranes: synthesis and application as fuel-cell catalysts. Adv Mater 17:2237–2241

    Article  Google Scholar 

  24. Ignacio-de Leon PAA, Zharov I (2013) SiO2@Au core shell nanospheres self-assemble to form colloidal crystals that can be sintered and surface modified to produce ph- controlled membranes. Langmuir 29:3749–3756

    Article  Google Scholar 

  25. Siddique H, Peeva LG, Stoikos K, Pasparakis G, Vamvakaki M, Livingston AG (2013) Membranes for organic solvent nanofiltration based on preassembled nanoparticles. Ind Eng Chem Res 52:1109–1121

    Article  Google Scholar 

  26. Nunes SP, Peinemann KV (2006) Membrane technology in the chemical industry, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  27. Huang C, Tassone T, Woodberry K, Sunday D, Green DL (2009) Impact of Atrp initiator spacer length on grafting poly(methyl methacrylate) from silica nanoparticles. Langmuir 25:13351–13360

    Article  Google Scholar 

  28. Munirasu S, Karunakaran RG, Rühe J, Dhamodharan R (2011) Synthesis and morphological study of thick benzyl methacrylate!styrene diblock copolymer brushes. Langmuir 27:13284–13292

    Article  Google Scholar 

  29. Ramakrishnan A, Dhamodharan R, Rühe J (2002) Controlled growth of pmma brushes on silicon surfaces at room temperature. Macromol Rapid Commun 23:612–616

    Article  Google Scholar 

  30. Ohno K, Morinaga T, Koh K, Tsujii Y, Fukuda T (2005) Synthesis of monodisperse silica particles coated with well-defined, high-density polymer brushes by surface-initiated atom transfer radical polymerization. Macromolecules 38:2137–2142

    Article  Google Scholar 

  31. Hansen CM (1999) Hansen solubility parameters, a user’s handbook. CRC Press, Boca Raton

    Book  Google Scholar 

  32. Olynick DL, Ashby PD, Lewis MD, Jen T, Lu H, Liddle JA, Chao W (2009) The Link between nanoscale feature development in a negative resist and the hansen solubility sphere. J Polym Sci 47:2091–2105

    Article  Google Scholar 

  33. Nistor C, Shishatskiy S, Popa M, Nunes SP (2009) Organic-inorganic CO2 selective membranes prepared by the Sol-Gel process. Sep Sci Technol 44:3392–3411

    Article  Google Scholar 

  34. Shishatiskiy S, Paus JR, Nunes SP, Peinemann KV (2010) Quaternary ammonium membrane materials for CO2 separation. J Memb Sci 359:44–53

    Article  Google Scholar 

  35. Sasidharan M, Kiyozumi Y, Bhaumik A (2011) CoAPO-5-type molecular sieve membrane: synthesis, characterization and catalytic performance. Catal Sci Technol 1:255–259

    Article  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzana P. Nunes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 385 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munirasu, S., Nunes, S.P. Porous asymmetric SiO2-g-PMMA nanoparticles produced by phase inversion. J Mater Sci 49, 7399–7407 (2014). https://doi.org/10.1007/s10853-014-8434-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8434-6

Keywords

Navigation