Skip to main content

Advertisement

Log in

Crystallization and microstructural evolution process from the mechanically alloyed amorphous SiBCN powder to the hot-pressed nano SiC/BN(C) ceramic

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanically alloyed amorphous SiBCN powders were hot pressed at 1500, 1600, 1700, 1800, and 1900 °C under a pressure of 80 MPa in the nitrogen atmosphere for 30 min. The crystallization, the microstructural evolution, and the properties of the prepared ceramics were carefully studied by XRD, TEM, HRTEM, and property testing. Results show that the crystallization of β-SiC, turbostratic BN(C), and α-SiC in the amorphous matrix starts at about 1500, 1600, and 1700 °C, respectively. When the powder is hot pressed at the temperatures higher than 1700 °C, the prepared ceramics always consist of nano β-SiC, α-SiC, turbostratic BN(C), and amorphous body. With the increase of the sintering temperature, the ceramic crystallinity becomes higher, the grains get larger, and the amorphous content becomes lower. At the temperatures lower than 1800 °C, the bulk density, the relative density, the flexural strength, the Young’s modulus, and the fracture toughness of the prepared ceramics show persistent but insignificant increase. However, when the ceramic is sintered at 1,900 °C, these properties are rapidly improving to 2.6 g/cm3, 91.8 %, 331.0 MPa, 139.4 GPa, and 2.8 MPa m1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Weinmann M, Schuhmacher J, Kummer H, Prinz S, Peng JQ, Seifert HJ, Christ M, Muller K, Bill J, Aldinger F (2000) Chem Mater 12(3):623

    Article  CAS  Google Scholar 

  2. Riedel R, Kienzle A, Dressler W, Ruwisch L, Bill J, Aldinger F (1996) Nature 382(6594):796

    Article  CAS  Google Scholar 

  3. Weinmann M, Kamphowe TW, Schuhmacher J, Muller K, Aldinger F (2000) Chem Mater 12(8):2112

    Article  CAS  Google Scholar 

  4. Christ M, Thurn G, Weinmann M, Bill J, Aldinger F (2000) J Am Ceram Soc 83(12):3025

    Article  CAS  Google Scholar 

  5. Zhang Z, Zeng F, Han J, Luo Y, Xu C (2011) J Mater Sci 46(18):5940. doi:10.1007/s10853-011-5549-x

    Article  CAS  Google Scholar 

  6. Vishnyakov VM, Ehiasarian AP, Vishnyakov VV, Hovsepian P, Colligon JS (2011) Surf Coat Tech 206(1):149

    Article  CAS  Google Scholar 

  7. Houska J, Vlcek J, Potocky S, Perina V (2007) Diam Relat Mater 16(1):29

    Article  CAS  Google Scholar 

  8. Vijayakumar A, Warren A, Todi R, Sundaram K (2009) J Mater Sci 20(2):144. doi:10.1007/s10854-008-9667-4

    CAS  Google Scholar 

  9. Kalas J, Vernhes R, Hreben S, Vlcek J, Klemberg-Sapieha JE, Martinu L (2009) Thin Solid Films 518(1):174

    Article  CAS  Google Scholar 

  10. Zeman P, Čapek J, Čerstvý R, Vlček J (2010) Thin Solid Films 519(1):306

    Article  CAS  Google Scholar 

  11. Bernard S, Weinmann M, Cornu D, Miele P, Aldinger F (2005) J Eur Ceram Soc 25(2–3):251

    Article  CAS  Google Scholar 

  12. Lee SH, Weinmann M, Aldinger F (2008) Acta Mater 56(7):1529

    Article  CAS  Google Scholar 

  13. Kumar R, Phillipp F, Aldinger F (2007) Mat Sci Eng A Struct 445–446(15):251

    Article  Google Scholar 

  14. Capek J, Hreben S, Zeman P, Vicek J, Cerstvy R, Houska J (2008) Surf Coat Tech 203(5–7):466

    Article  CAS  Google Scholar 

  15. Rooke MA, Sherwood PMA (1997) Chem Mater 9(1):285

    Article  CAS  Google Scholar 

  16. Vlcek J, Potocky T, Cizek J, Houska J, Kormunda M, Zeman P, Perina V, Zemek J, Setsuhara Y, Konuma S (2005) J Vac Sci Technol A 23(6):1513

    Article  CAS  Google Scholar 

  17. Cizek J, Vlcek J, Potocky S, Houska J, Soukup Z, Kalas J, Jedrzejowski P, Klemberg-Sapieha JE, Martinu L (2008) Thin Solid Films 516(21):7286

    Article  CAS  Google Scholar 

  18. Kumar R, Cai Y, Gerstel P, Rixecker G, Aldinger F (2006) J Mater Sci 41(21):7088. doi:10.1007/s10853-006-0934-6

    Article  CAS  Google Scholar 

  19. Yang ZH, Zhou Y, Jia DC, Meng QC (2008) Mat Sci Eng A Struct 489(1–2):187

    Google Scholar 

  20. Zhang P, Jia D, Yang Z, Duan X, Zhou Y (2012) Ceram Int http://dx.doi.org/10.1016/j.ceramint.2012.05.012

  21. Vijayakumar A, Todi RM, Todi VO, Sundaram KB (2007) J Electrochem Soc 154(10):H875

    Article  CAS  Google Scholar 

  22. Wilden J, Wank A, Bykava A (2005) Surf Coat Tech 200(1–4):612

    Article  CAS  Google Scholar 

  23. Cervera M, Hernández MJ, Piqueras J, Morant C, Prieto P, Elizalde E, Sanz JM (2004) J Vac Sci Technol A 22(3):640

    Article  CAS  Google Scholar 

  24. Colombo P, Mera G, Riedel R, Soraru GD (2010) J Am Ceram Soc 93(7):1805

    CAS  Google Scholar 

  25. Yang ZH (2008) Doctoral Thesis, Harbin Institute of Technology, Harbin, 77

  26. Yang ZH, Jia DC, Duan XM, Zhou Y (2010) J Non Cryst Solids 356(6–8):326

    Article  CAS  Google Scholar 

  27. Bill J, Kamphowe TW, Muller A, Wichmann T, Zern A, Jalowieki A, Mayer J, Weinmann M, Schuhmacher J, Muller K, Peng JQ, Seifert HJ, Aldinger F (2001) Appl Organomet Chem 15(10):777

    Article  CAS  Google Scholar 

  28. Aldinger F, Weinmann M, Bill J (1998) Pure Appl Chem 70(2):439

    Article  CAS  Google Scholar 

  29. Haug J, Lamparter P, Weinmann M, Aldinger F (2004) Chem Mater 16(1):83

    Article  CAS  Google Scholar 

  30. Schuhmacher J, Berger F, Weinmann M, Bill J, Aldinger F, Muller K (2001) Appl Organomet Chem 15(10):809

    Article  CAS  Google Scholar 

  31. Schmidt H, Gruber W, Borchardt G, Gerstel P, Muller A, Bunjes N (2005) J Eur Ceram Soc 25(2–3):227

    Article  CAS  Google Scholar 

  32. Muller A, Peng JQ, Seifert HJ, Bill J, Aldinger F (2002) Chem Mater 14(8):3406

    Article  Google Scholar 

  33. Gerstel P, Muller A, Bill J, Aldinger F (2003) Chem Mater 15(26):4980

    Article  CAS  Google Scholar 

  34. Tang Y, Wang J, Li XD, Li WH, Wang H, Wang XZ (2009) Ceram Int 35(7):2871

    Article  CAS  Google Scholar 

  35. Muller A, Zern A, Gerstel P, Bill J, Aldinger F (2002) J Eur Ceram Soc 22(9–10):1631

    Article  CAS  Google Scholar 

  36. Tavakoli AH, Gerstel P, Golczewski JA, Bill J (2010) Acta Mater 58(18):6002

    Article  CAS  Google Scholar 

  37. Tavakoli AH, Gerstel P, Golczewski JA, Bill J (2011) J Mater Res 26(4):600

    Article  CAS  Google Scholar 

  38. Yang ZH, Jia DC, Zhou Y, Yu CQ (2007) Ceram Int 33(8):1573

    Article  CAS  Google Scholar 

  39. Bunjes N, Muller A, Sigle W, Aldinger F (2007) J Non Cryst Solids 353(16–17):1567

    Article  CAS  Google Scholar 

  40. Suryanarayana C, Klassen T, Ivanov E (2011) J Mater Sci 46(19):6301. doi:10.1007/s10853-011-5287-0

    Article  CAS  Google Scholar 

  41. Gabbitas B, Cao P, Raynova S, Zhang D (2012) J Mater Sci 47(3):1234. doi:10.1007/s10853-011-5886-9

    Article  CAS  Google Scholar 

  42. Bechstedt F, Käckell P, Zywietz A, Karch K, Adolph B, Tenelsen K, Furthmüller J (1997) Phys Status Solidi B 202(1):35

    Article  CAS  Google Scholar 

  43. Pirouz P, Yang JW (1993) Ultramicroscopy 51(1–4):189

    Article  CAS  Google Scholar 

  44. Li ZQ, Lu CJ, Xia ZP, Zhou Y, Luo Z (2007) Carbon 45(8):1686

    Article  CAS  Google Scholar 

  45. Zhang P, Jia D, Yang Z, Duan X, Zhou Y (2012) J Alloy Compd http://dx.doi.org/10.1016/j.jallcom.2012.05.073

  46. Saugnac F, Teyssandier F, Marchand A (1992) J Am Ceram Soc 75(1):161

    Article  CAS  Google Scholar 

  47. Jalowiecki A, Bill J, Aldinger F (1996) Compos Part A Appl S 27(9):717

    Article  Google Scholar 

  48. Iwata H, Lindefelt U, Öberg S, Briddon PR (2002) Mat Sci Forum 389–393(1):439

    Article  Google Scholar 

  49. Rahaman MN (2003) Ceramic processing and sintering. Marcel Dekker, New York

    Google Scholar 

  50. Kumar NVR, Prinz S, Cai Y, Zimmermann A, Aldinger F, Berger F, Muller K (2005) Acta Mater 53(17):4567

    Article  CAS  Google Scholar 

  51. Nishimura T, Haug R, Bill J, Thurn G, Aldinger F (1998) J Mater Sci 33(21):5237. doi:10.1023/A:1004440122266

    Article  CAS  Google Scholar 

  52. Manoj Kumar B, Roh M-H, Kim Y-W, Kim W, Park S-W, Seo W-S (2009) J Mater Sci 44(21):5939. doi:10.1007/s10853-009-3818-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial supports from the National Natural Science Foundation of China under Grant Nos. 51072041, 50902031 and 51021002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, P., Jia, D., Yang, Z. et al. Crystallization and microstructural evolution process from the mechanically alloyed amorphous SiBCN powder to the hot-pressed nano SiC/BN(C) ceramic. J Mater Sci 47, 7291–7304 (2012). https://doi.org/10.1007/s10853-012-6683-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6683-9

Keywords

Navigation