Skip to main content
Log in

Analysis of martensite–austenite constituent and its effect on toughness in submerged arc welded joint of low carbon bainitic steel

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Martensite–austenite (M–A) constituent formed during welding is generally recognized as an important factor to decrease the toughness of welded joint. In this article, the morphology and chemical composition of M–A constituent in the low carbon bainitic steel welded joint was analysed in detail by means of optical microscope, transmission electron microscope and scanning electron microscope with electron probe microanalysis. The experimental results show that the M–A constituent formed in the different sub-zones presents different morphologies and different amounts. The maximum amount of M–A constituent occurs in the coarse grained heat affected zone (HAZ). It is evident that the carbon atoms segregate on the M–A constituent and carbon concentration on the slender M–A constituent is higher than that on the massive M–A constituent. Meanwhile, the distribution profile of silicon on the M–A constituent shows an obvious inhomogeneity. Most of M–A constituents have a twinned structure and/or a high dislocation density. According to impact testing results, the crack initiation energy in the HAZ specimens deteriorates significantly because the large M–A constituent can assist the formation of cleavage crack. On the other hand, the coarse prior austenite grain in the HAZ lowers the crack propagation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Viano DM, Ahmed NU, Schumann GO (2000) Sci Technol Weld Join 5(1):26

    Article  CAS  Google Scholar 

  2. Kojima A, Yoshii K, Hada T, Saeki O, Ichikawa K, Yoshida Y, Shimura Y, Azuma K (2004) Nippon Steel Tech Report 90:39

    Google Scholar 

  3. Koseki T, Thewlis G (2005) Mater Sci Technol 21:867

    Article  CAS  Google Scholar 

  4. Ricks RA, Howell PR, Barritte GS (1982) J Mater Sci 17:730. doi:10.1007/BF00540369

    Article  Google Scholar 

  5. Davis CL, King JE (1994) Metall Mater Trans A 25:563

    Article  Google Scholar 

  6. Li C, Wang Y, Chen Y (2011) J Mater Sci 46:6424. doi:10.1007/s10853-011-5592-7

    Article  CAS  Google Scholar 

  7. Li Y, Crowther DN, Green MJW, Mitchell PS, Baker TN (2001) ISIJ Int 41:46

    Article  CAS  Google Scholar 

  8. Moeinifar S, Kokabi AH, Hosseini HRM (2011) Mater Des 32:869

    Article  CAS  Google Scholar 

  9. Harrrison PL, Farrar RA (1989) Int Mater Rev 34:35

    Google Scholar 

  10. Biss V, Cryderman RL (1970) Metall Trans 2:2267

    Google Scholar 

  11. De Meester B (1997) ISIJ Int 37:537

    Article  Google Scholar 

  12. EN ISO 9692-2 (1998) Welding and allied processes-joint preparation: Part 2: submergered arc welding of steels

  13. GB/T 12470 (2003) Low-alloy steel electrodes and fluxes for submerged arc welding (Chinese Standard)

  14. ISO 9016 (2001) Destructive tests on welds in metallic materials-impact tests-test specimen location, notch orientation and examination

  15. Wiesner CS (1996) Int J Pres Ves Pip 69:185

    Article  CAS  Google Scholar 

  16. Cvetkovski S, Adziev T, Adziev G, Sedmak A (2002) Eur Struct Integr Soc 30:95

    Article  CAS  Google Scholar 

  17. Avazkonandeh-Gharavol MH, Haddad-Sabzevar M, Haerian A (2009) J Mater Sci 44:1902. doi:10.1007/s10853-009-4141-0

    Article  Google Scholar 

  18. Thewlis G, Chao WT, Harrison PL, Rose AJ (2008) Mater Sci Technol 24:771

    Article  CAS  Google Scholar 

  19. Bhadeshia HKDH, Christian JW (1990) Metall Trans A 21A:767

    CAS  Google Scholar 

  20. Bonnevie E, Ferriere G, Ikhlef A, Kaplan D, Orain JM (2004) Mater Sci Eng A 385:352

    Google Scholar 

  21. Santofimia MJ, Kwakernaak C, Sloof WG, Zhao L, Sietsma J (2010) Mater Charact 61:937

    Article  CAS  Google Scholar 

  22. Taillard R, Verrier P, Maurickx T, Foct J (1995) Metall Mater Trans A 26A:447

    Article  Google Scholar 

  23. Pereloma EV, Timokhina IB, Miller MK, Hodgson PD (2007) Acta Mater 55:2587

    Article  CAS  Google Scholar 

  24. Lambert A, Drillet J, Gourgues AF, Sturel T, Pineau A (2000) Sci Technol Weld Join 5:168

    Article  CAS  Google Scholar 

  25. Poorhaydari K, Patchett BM, Ivey DG (2006) Mater Sci Eng A 435–436:371

    Google Scholar 

  26. Lan L, Qiu C, Zhao W, Gao X, Du L (2011) Mater Sci Eng A 529:192

    Article  CAS  Google Scholar 

  27. Tweed JH, Knott JF (1987) Acta Metall 35:1401

    Article  CAS  Google Scholar 

  28. Matsuda F, Ikeuchi K, Fukada Y, Horii Y, Okada H, Shiwaku T, Shiga C, Suzuki S (1995) Trans JWRI 24:1

    CAS  Google Scholar 

  29. Li Y, Baker TN (2010) Mater Sci Technol 26:1029

    Article  CAS  Google Scholar 

  30. Moeinifar S, Kokabi AH, Madaah Hosseini HR (2011) J Mater Process Technol 211:368

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present study is supported by the National Natural Science Foundation of China (No. 51074052) and the Fundamental Research Funds for the Central Universities (N100607001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangyun Lan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lan, L., Qiu, C., Zhao, D. et al. Analysis of martensite–austenite constituent and its effect on toughness in submerged arc welded joint of low carbon bainitic steel. J Mater Sci 47, 4732–4742 (2012). https://doi.org/10.1007/s10853-012-6346-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6346-x

Keywords

Navigation