Skip to main content

Advertisement

Log in

Paleomodeling reveals priority areas for conservation of stingless bees from the Caatinga region, a neotropical dry forest

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Conserving pollinators has been a concern and priority for ecological programs around the world, since these animals play a major role in forest ecosystems. Bees are among the main pollinators of these ecosystems. Here we used paleomodeling to infer refuge areas that putatively concentrate high levels of genetic diversity for stingless bees and that would be priorities for conservation of these pollinators within Caatinga, a seasonally dry forest in Neotropical Dry Diagonal. In this sense, a total of 319 records of 10 species was used to build species models for the current days, Mid-Holocene and Last Glacial Maximum periods using MaxEnt algorithm. The results indicated climatically-stable areas (i.e., refuges) for each stingless bee species, where higher levels of historical genetic diversity are expected in the Caatinga. Moreover, a large continuous range of suitable areas for the assemblage in the Caatinga, divided into four main refuges, which likely concentrate high levels of genetic diversity for these pollinators, were observed. Considering that the Caatinga is threatened and has experienced an increase of deforestation in recent years, this inference of refuge areas should be useful to direct the choice of new conservation units. Our results also provide spatial insights for future phylogeographic studies involving these insects, which are recommended and might reinforce these findings. Conservation policies directed at preserving pollinating species may be an effective mechanism for preserving the biodiversity in the threatened Caatinga.

Implications for insect conservation

Our study inferred four main refuge areas within this region that putatively concentrate high diversity for stingless bees, which should be considered as a priority in conservation strategies in the threatened Caatinga. In addition, we suggest evaluating the creation of new Conservation Units considering refuges areas proposed to the assembly of pollinators from this Neotropical dry forest, since this region exhibits high levels of species richness and endemism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson RP, Gonzalez IJ (2011) Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecol Model 222:2796–2811

    Article  Google Scholar 

  • Anderson RP, Raza A (2010) The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J Biogeogr 37:1378–1393

    Article  Google Scholar 

  • Batalha-Filho H, Waldschmidt AM, Alves RMO (2011) Distribuição Potencial Da abelha sem ferrão endêmica da caatinga, (Hymenoptera, Apidae) Melipona mandacaia. Magistra 3:129–133

    Google Scholar 

  • Bodin Ö, Tengö M, Norman A, Lundberg J, Elmqvist T (2006) The value of small size: loss of forest patches and threshold effects on ecosystem services in southern Madagascar. Ecol Appl 16:440–451

    Article  PubMed  Google Scholar 

  • Bonatti V, Simões ZLP, Franco FF, Francoy TM (2014) Evidence of at least two evolutionary lineages in Melipona subnitida (Apidae, Meliponini) suggested by mtDNA variability and geometric morphometrics of forewings. Naturwissenschaften 101:17–24

    Article  CAS  PubMed  Google Scholar 

  • Brown KS, Ab’Saber AN (1979) Ice-ages forest refuges and evolution in the Neotropics: correlation of paleoclimatological, geomorphological, and pedological data with modern biological endemism. Paleoclimas 5:1–30

    Google Scholar 

  • Brown JC, Albrecht C (2001) The Effect of Tropical Deforestation on Stingless bees of the Genus Melipona (Insecta: Hymenoptera: Apidae: Meliponini) in Central Rondônia, Brazil. J Biogeogr 28:623–634

    Article  Google Scholar 

  • Camargo JMF, Pedro SRM (2003) Meliponini Neotropicais: o Gênero Partamona Schwarz, 1939 (Hymenoptera: Apidae, Apinae) - Bionomia E Biogeografia. Rev Brasil Entomol 47:31–372

    Google Scholar 

  • Carnaval AC, Moritz C (2008) Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic Forest. J Biogeogr 35:1187–1201

    Article  Google Scholar 

  • Carnaval AC, Hickerson MJ, Haddad CFB et al (2009) Stability Predicts Genetic Diversity in the Brazilian Atlantic Forest Hotspot. Science 323:785–789

    Article  CAS  PubMed  Google Scholar 

  • Carneiro-Neto TFS, Rebouças PO, Pereira JE, Duarte PM, Santos MHLC, Silva GC, Siqueira KMM (2017) Spectrum of Pollen stored by Melipona mandacaia (Smith, 1863) (Hymenoptera: Apidae, Meliponini) in an Urban Arid Landscape. Sociobiology 64:284–291

  • Carvalho AF, Del Lama MA (2015) Predicting priority areas for conservation from historical climate modelling: stingless bees from Atlantic Forest hotspot as a case study. J Insect Conserv 19:581–587

    Article  Google Scholar 

  • Castelletti CHM, Santos AM, Tabarelli M, Silva JMC (2003) Quanto ainda resta da Caatinga? Uma estimativa preliminar. In: Leal IR, Tabarelli M, Silva JMC (eds) Ecologia E conservação Da Caatinga. Editora Universitária da UFPE, Recife, pp 719–734

    Google Scholar 

  • Conceição PJ (2013) Levantamento florístico e perfil botânico do pólen (samburá) da abelha Melipona quadrifasciata anthidioides Lepeletier, 1836 (Hymenoptera: Apidae) Da Região Semiárida. Estado Da Bahia. Dissertação (Mestrado em Ciências Agrárias) – Centro De Ciências Agrárias. Universidade Federal do Recôncavo, Ambientais e Biológicas Cruz das Almas

    Google Scholar 

  • Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Embert D, Reichle S, Larrea-Alcázar DM, Cortez C, Munõz A, Gonzales L, Montanõ R, Aguayo R et al (2011) Priority areas for amphibian conservation in a neotropical megadiverse country: the need for alternative, non place based, conservation. Biodivers Conserv 20:1557–1570

    Article  Google Scholar 

  • Frantine-Silva W, Giangarelli DC, Penha RES, Suzuki KM, Dec E, Gaglianone MC, Alves-dos-Santos I, Sofia SH (2017) Phylogeography and historical demography of the orchid bee Euglossa iopoecila: signs of vicariant events associated to quaternary climatic changes. Conserv Genet 18:539–552

    Article  Google Scholar 

  • Giannini TC, Acosta AL, Garófalo CA, Saraiva AM, Alves dos Santos I, Imperatriz-Fonseca VL (2012) Pollination services at risk: bee habitats will decrease owing to climate change in Brazil. Ecol Modell 244:127–131

    Article  Google Scholar 

  • Giannini TC, Acosta AL, Silva CI, Oliveira PEAM, Imperatriz-Fonseca VL, Saraiva AM (2013) Identifying the areas to preserve passion fruit pollination service in Brazilian tropical savannas under climate change. Agric Ecosyst Environ 171:39–46

    Article  Google Scholar 

  • Giovannini A, Seglie D, Giacoma C (2014) Identifying priority areas for conservation of spadefoot toad, Pelobates fuscus insubricus using a maximum entropy approach. Biodivers Conserv 23:1427–1439

    Article  Google Scholar 

  • Goulson D, Nicholls E, Botías C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:1255957

    Article  PubMed  Google Scholar 

  • Haffer J (1969) Speciation in amazonian forest birds. Science 165:131–137

    Article  CAS  PubMed  Google Scholar 

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785

    Article  Google Scholar 

  • Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans Royal Soc B: Biological Sciences 359:183–195

    Article  CAS  PubMed Central  Google Scholar 

  • Hijmans RJ, Van Etten J (2015) Raster: Geographic data analysis and modeling. R Package Version 2:1–49

    Google Scholar 

  • Holland JM, Smith BM, Storkey J et al (2015) Managing habitats on English farmland for insect pollinator conservation. Biol Conserv 182:215–222

    Article  Google Scholar 

  • Hugall A, Moritz C, Moussalli A, Stanisic J (2002) Reconciling paleodistribution models and comparative phylogeography in the Wet tropics rainforest land snail Gnarosophia bellendenkerensis (Brazier 1875). PNAS 99:6112–61177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiménez-Valverde A (2012) Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob Ecol Biogeogr 21:498–507. https://doi.org/10.1111/j.1466-8238.2011.00683.x

    Article  Google Scholar 

  • Knight ME, Osborne JL, Sanderson RA, Hale RJ, Martin AP, Goulson D (2009) Bumblebee nest density and the scale of available forage in arable landscapes. Insect Conserv Div 2:116–124

    Article  Google Scholar 

  • Leroy B, Delsol R, Hugueny B et al (2018) Without quality presence-absence data, discrimination metrics such as TSS can be misleading measures of model performance. J Biogeogr 45:1994–2002. https://doi.org/10.1111/jbi.13402

    Article  Google Scholar 

  • Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence–absence models in ecology: the need to account for prevalence. J Appl Ecol 38:921–931

    Article  Google Scholar 

  • Martins FM (2011) Historical biogeography of the Brazilian Atlantic Forest and the Carnaval–Moritz model of pleistocene refugia: what do phylogeographical studies tell us? Biol J Linn Soc 104:499–509

    Article  Google Scholar 

  • Ministério do Meio Ambiente (MMA) (2023) Caatinga. [online] http://antigo.mma.gov.br/biomas/caatinga.html (accessed on 29 August 2023)

  • Miranda EA, Carvalho AF, Andrade-Silva ACR et al (2015) Natural history and biogeography of Partamona rustica, an endemic bee in dry forests of Brazil. Insect Soc 62:255–263

    Article  Google Scholar 

  • Miranda EA, Batalha-Filho H, Congrains C et al (2016) Phylogeography of Partamona rustica (Hymenoptera, Apidae), an endemic stingless bee from the neotropical dry forest diagonal. PLoS ONE 11(10):e0164441

    Article  PubMed  PubMed Central  Google Scholar 

  • Miranda EA, Ferreira KM, Carvalho AT, Martins CF, Fernandes CR et al (2017) Pleistocene climate changes shaped the population structure of Partamona seridoensis (Apidae, Meliponini), an endemic stingless bee from the neotropical dry forest. PLoS ONE 12(4):e0175725

    Article  PubMed  PubMed Central  Google Scholar 

  • Miranda EA, Carvalho AF, Gomes-Miranda JJ et al (2019) Priority areas for conservation of orchid bees (Apidae, Euglossini) in the Atlantic Forest. J Insect Conserv 23:613–621

    Article  Google Scholar 

  • Miranda EA, Lima Id, Oi CA et al (2021) Overlap of ecological niche breadth of Euglossa cordata and Eulaema nigrita (Hymenoptera, Apidae, Euglossini) accessed by Pollen loads and species distribution modeling. Neotrop Entomol 50:197–207. https://doi.org/10.1007/s13744-020-00847-x

    Article  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB et al (2015) Vegan: community ecology package. R Package Version 2:2–1

    Google Scholar 

  • Ollerton F, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326

    Article  Google Scholar 

  • Pedro SRM (2014) The stingless bee fauna in Brazil (Hymenoptera: Apidae). Sociobiology 61:348–354

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259

    Article  Google Scholar 

  • Pinto RS, Albuquerque PMC, Rêgo MMC (2014) Pollen analysis of Food pots stored by Melipona subnitida Ducke (Hymenoptera: Apidae) in a Restinga area. Sociobiology 61:461–469

    Article  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C et al (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol and Evol 25:345–353

    Article  Google Scholar 

  • QGIS Development Team (2016) QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org

  • Rodrigues F, Ribeiro MF (2014) Influence of experience on homing ability of foragers of Melipona mandacaia Smith (Hymenoptera: Apidae: Meliponini). Sociobiology 61:523–528

    Article  Google Scholar 

  • Rosauer D, Lafan SW, Crisp MD et al (2009) Phylogenetic endemism: a new approach for identifying geographical concentrations of evolutionary history. Mol Ecol 18:4061–4072

    Article  PubMed  Google Scholar 

  • Sánchez-Azofeifa GA, Quesada M, Rodríguez JP (2005) Research priorities for neotropical dry forests. Biotropica 37:477–485

    Article  Google Scholar 

  • Silva MPP, Kamino LHY, Pôrto KC (2014) Is the current network system of protected areas in the Atlantic Forest effective in conserving key species of bryophytes? Trop Conserv Sci 7:61–74

    Article  Google Scholar 

  • Soley-Guardia M, Radosavljevic A, Rivera JL, Anderson RP (2014) The effect of spatially marginal localities in modelling species niches and distributions. J Biogeogr 41:1390–1401

    Article  Google Scholar 

  • Templeton AR (2006) Population genetics and microevolutionary theory. Wiley, New Jersey

    Book  Google Scholar 

  • Tscharntke T, Stefan-Dewenter I, Kruess A, Thies C (2002) Contribution of small habitat fragments to conservation of insect communities of grassland-cropland landscapes. Ecol Appl 12:354–363

    Google Scholar 

  • Werneck FP (2011) The diversification of eastern south American open vegetation biomes: historical biogeography and perspectives. Quart Sci Rev 30:1630–1648

    Article  Google Scholar 

  • Werneck FP, Costa GC, Colli GR, Prado DE, Sites JW Jr (2011) Revisiting the historical distribution of seasonally dry tropical forests: new insights based on palaeodistribution modelling and palynological evidence. Global Ecol Biogeogr 20:272–288

    Article  Google Scholar 

  • Werneck FP, Nogueira C, Colli GR, Sites JW Jr, Costa GC (2012) Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of south American savannas, species richness and conservation in a biodiversity hotspot. J Biogeogr 39:1695–1706

    Article  Google Scholar 

  • Werneck FP, Leite RN, Geurgas SR, Rodrigues MT (2015) Biogeographic history and cryptic diversity of saxicolous Tropiduridae lizards endemic to the semiarid Caatinga. BMC Evol Biol 15:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Willmer PG (2012) Pollinator–plant synchrony tested by climate change. Curr Biol 22:131–132

    Article  Google Scholar 

  • Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773

    Article  Google Scholar 

  • Wratten SD, Gillespie G, Decourtyec D, Maderd E, Desneuxf N (2012) Pollinator habitat enhancement: benefits to other ecosystem services. Agric Ecosyst Environ 159:112–122

    Article  Google Scholar 

  • Zanella FCV, Martins CF (2008) Abelhas Da Caatinga: Biogeografia, Ecologia E Conservação. Ecologia E Conservação Da Caatinga. Editora da UFPE, Recife, pp 75–134

    Google Scholar 

Download references

Acknowledgements

We thank Jamile Gomes Miranda and Ana Clara Araújo for helping in bee records search for some species. We thank Dr. Rogério Alves, Marcos de Andrade and all beekeepers for providing records of occurrences for some species. We thank Dr. Marco A. Del Lama for comments on an earlier version of this manuscript.

Funding

EAM Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for his postdoctoral fellowship (154912/2016-6 and 151193/2019-3 PDJ-CNPq); MAC thanks CNPq for a productivity fellowship (CNPq-311790/2019-4).

Author information

Authors and Affiliations

Authors

Contributions

E.A.M. wrote the main manuscript, made all analysis and prepared figures, tables and reviewed the manuscript; MAC wrote the main manuscript and reviewed the text. All authors contributed to the study conception and design.

Corresponding author

Correspondence to Elder Assis Miranda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, E.A., Costa, M.A. Paleomodeling reveals priority areas for conservation of stingless bees from the Caatinga region, a neotropical dry forest. J Insect Conserv 28, 369–377 (2024). https://doi.org/10.1007/s10841-023-00536-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-023-00536-1

Keywords

Navigation