Skip to main content
Log in

Association of ECG characteristics with clinical and echocardiographic outcome to CRT in a non-LBBB patient population

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Purpose

Effectiveness of cardiac resynchronization therapy (CRT) in patients without left bundle branch block (non-LBBB) QRS morphology is limited. Additional selection criteria are needed to identify these patients.

Methods

Seven hundred ninety consecutive patients with non-LBBB morphology, who received a CRT-device in 3 university centers in the Netherlands, were selected. Pre-implantation 12-lead ECGs were evaluated on morphology, duration, and area of the QRS complex, as well as on PR interval, left ventricular activation time (LVAT), and the presence of fragmented QRS (fQRS). Association of these ECG features with the primary endpoint: a combination of left ventricular assist device (LVAD) implantation, cardiac transplantation and all-cause mortality, and secondary endpoint—echocardiographic reduction of left ventricular end-systolic volume (LVESV)—were evaluated.

Results

The primary endpoint occurred more often in non-LBBB patients with with PR interval ≥ 230ms, QRS area < 109μVs, and with fQRS. Multivariable regression analysis showed independent associations of QRS area (HR 2.33 [1.44, 3.77], p = 0.001) and PR interval (HR 2.03 [1.51, 2.74], p < 0.001) only. Mean LVESV reduction was significantly lower in patients with baseline RBBB, QRS duration < 150 ms, PR interval ≥ 230 ms, and in QRS area < 109 μVs. Multivariable regression analyses only showed significant associations between QRS area ≥ 109 μVs (OR 2.00 [1.09, 3.66] p = 0.025) and probability of echocardiographic response to CRT.

Conclusions

In the heterogeneous non-LBBB patient population, QRS area and PR prolongation rather than traditional QRS duration and morphology are associated to both clinical and echocardiographic outcomes of CRT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zareba W, Klein H, Cygankiewicz I, Hall WJ, McNitt S, Brown M, et al. effectiveness of cardiac resynchronization therapy by QRS morphology in the multicenter automatic defibrillator implantation Trial-Cardiac Resynchronization Therapy (MADIT-CRT). Circulation. 2011;123(10):1061–72. https://doi.org/10.1161/CIRCULATIONAHA.110.960898.

    Article  PubMed  Google Scholar 

  2. Gold MR, Thebault C, Linde C, Abraham WT, Gerritse B, Ghio S, et al. Effect of QRS duration and morphology on cardiac resynchronization therapy outcomes in mild heart failure: results from the Resynchronization Reverses Remodeling in Systolic Left Ventricular Dysfunction (REVERSE) study. Circulation. 2012;126(7):822–9. https://doi.org/10.1161/CIRCULATIONAHA.112.097709.

    Article  PubMed  Google Scholar 

  3. Bilchick KC. Does cardiac resynchronization therapy benefit patients with right bundle branch block: left ventricular free wall pacing: seldom right for right bundle branch block. Circ Arrhythm Electrophysiol. 2014;7(3):543–52. https://doi.org/10.1161/CIRCEP.113.000747.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Birnie DH, Ha A, Higginson L, Sidhu K, Green M, Philippon F, et al. Impact of QRS morphology and duration on outcomes after cardiac resynchronization therapy: results from the Resynchronization-Defibrillation for Ambulatory Heart Failure Trial (RAFT). Circ Heart Fail. 2013;6(6):1190–8. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000380.

    Article  PubMed  Google Scholar 

  5. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129–200. https://doi.org/10.1093/eurheartj/ehw128.

    Article  PubMed  Google Scholar 

  6. Cleland JG, Abraham WT, Linde C, Gold MR, Young JB, Claude Daubert J, et al. An individual patient meta-analysis of five randomized trials assessing the effects of cardiac resynchronization therapy on morbidity and mortality in patients with symptomatic heart failure. Eur Heart J. 2013;34(46):3547–56. https://doi.org/10.1093/eurheartj/eht290.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Woods B, Hawkins N, Mealing S, Sutton A, Abraham WT, Beshai JF, et al. Individual patient data network meta-analysis of mortality effects of implantable cardiac devices. Heart. 2015;101(22):1800–6. https://doi.org/10.1136/heartjnl-2015-307634.

    Article  CAS  PubMed  Google Scholar 

  8. Kutyifa V, Stockburger M, Daubert JP, Holmqvist F, Olshansky B, Schuger C, et al. PR interval identifies clinical response in patients with non-left bundle branch block: a multicenter automatic defibrillator implantation trial-cardiac resynchronization therapy substudy. Circ Arrhythm Electrophysiol. 2014;7(4):645–51. https://doi.org/10.1161/CIRCEP.113.001299.

    Article  PubMed  Google Scholar 

  9. Senfield J, Daubert C, Abraham WT, Ghio S. St John Sutton M, Cerkvenik J et al. The impact of the PR interval in patients receiving cardiac resynchronization therapy: results from the REVERSE study. JACC Clin Electrophysiol. 2017;3(8):818–26. https://doi.org/10.1016/j.jacep.2017.01.017.

    Article  PubMed  Google Scholar 

  10. Mafi Rad M, Wijntjens GW, Engels EB, Blaauw Y, Luermans JG, Pison L, et al. Vectorcardiographic QRS area identifies delayed left ventricular lateral wall activation determined by electroanatomic mapping in candidates for cardiac resynchronization therapy. Heart Rhythm. 2016;13(1):217–25. https://doi.org/10.1016/j.hrthm.2015.07.033.

    Article  PubMed  Google Scholar 

  11. Eitel C, Wilton SB, Switzer N, Cowan K, Exner DV. Baseline delayed left ventricular activation predicts long-term clinical outcome in cardiac resynchronization therapy recipients. Europace. 2012;14(3):358–64. https://doi.org/10.1093/europace/eur298.

    Article  PubMed  Google Scholar 

  12. Celikyurt U, Agacdiken A, Sahin T, Al N, Kozdag G, Vural A, et al. Number of leads with fragmented QRS predicts response to cardiac resynchronization therapy. Clin Cardiol. 2013;36(1):36–9. https://doi.org/10.1002/clc.22061.

    Article  PubMed  Google Scholar 

  13. van Deursen CJ, Vernooy K, Dudink E, Bergfeldt L, Crijns HJ, Prinzen FW, et al. Vectorcardiographic QRS area as a novel predictor of response to cardiac resynchronization therapy. J Electrocardiol. 2015;48(1):45–52. https://doi.org/10.1016/j.jelectrocard.2014.10.003.

    Article  PubMed  Google Scholar 

  14. Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, Boriani G, Breithardt OA, et al. 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: the Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Eur Heart J. 2013;34(29):2281–329. https://doi.org/10.1093/eurheartj/eht150.

    Article  PubMed  Google Scholar 

  15. Dickstein K, Vardas PE, Auricchio A, Daubert JC, Linde C, McMurray J, et al. 2010 Focused Update of ESC Guidelines on device therapy in heart failure: an update of the 2008 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure and the 2007 ESC guidelines for cardiac and resynchronization therapy. Developed with the special contribution of the Heart Failure Association and the European Heart Rhythm Association. Eur Heart J. 2010;31(21):2677–87. https://doi.org/10.1093/eurheartj/ehq337.

    Article  PubMed  Google Scholar 

  16. Strauss DG, Selvester RH, Wagner GS. Defining left bundle branch block in the era of cardiac resynchronization therapy. Am J Cardiol. 2011;107(6):927–34. https://doi.org/10.1016/j.amjcard.2010.11.010.

    Article  PubMed  Google Scholar 

  17. Engels EB, Vegh EM, Van Deursen CJ, Vernooy K, Singh JP, Prinzen FW. T-wave area predicts response to cardiac resynchronization therapy in patients with left bundle branch block. J Cardiovasc Electrophysiol. 2015;26(2):176–83. https://doi.org/10.1111/jce.12549.

    Article  PubMed  Google Scholar 

  18. Engels EB, Alshehri S, van Deursen CJ, Wecke L, Bergfeldt L, Vernooy K, et al. The synthesized vectorcardiogram resembles the measured vectorcardiogram in patients with dyssynchronous heart failure. J Electrocardiol. 2015;48(4):586–92. https://doi.org/10.1016/j.jelectrocard.2015.04.001.

    Article  PubMed  Google Scholar 

  19. Kors JA, van Herpen G, Sittig AC, van Bemmel JH. Reconstruction of the Frank vectorcardiogram from standard electrocardiographic leads: diagnostic comparison of different methods. Eur Heart J. 1990;11(12):1083–92.

    Article  CAS  PubMed  Google Scholar 

  20. van Stipdonk AMW, Ter Horst I, Kloosterman M, Engels EB, Rienstra M, Crijns H, et al. QRS Area Is a Strong Determinant of Outcome in Cardiac Resynchronization Therapy. Circ Arrhythm Electrophysiol. 2018;11(12):e006497. https://doi.org/10.1161/CIRCEP.118.006497.

    Article  PubMed  Google Scholar 

  21. Sweeney MO, van Bommel RJ, Schalij MJ, Borleffs CJ, Hellkamp AS, Bax JJ. Analysis of ventricular activation using surface electrocardiography to predict left ventricular reverse volumetric remodeling during cardiac resynchronization therapy. Circulation. 2010;121(5):626–34. https://doi.org/10.1161/CIRCULATIONAHA.109.894774.

    Article  PubMed  Google Scholar 

  22. Das MK, Suradi H, Maskoun W, Michael MA, Shen C, Peng J, et al. Fragmented wide QRS on a 12-lead ECG: a sign of myocardial scar and poor prognosis. Circ Arrhythm Electrophysiol. 2008;1(4):258–68. https://doi.org/10.1161/CIRCEP.107.763284.

    Article  PubMed  Google Scholar 

  23. Maass AH, Vernooy K, Wijers SC, van’t Sant J, Cramer MJ, Meine M, et al. Refining success of cardiac resynchronization therapy using a simple score predicting the amount of reverse ventricular remodelling: results from the Markers and Response to CRT (MARC) study. Europace. 2018;20(2):e1–e10. https://doi.org/10.1093/europace/euw445.

    Article  PubMed  Google Scholar 

  24. Vegh EM, Engels EB, van Deursen CJ, Merkely B, Vernooy K, Singh JP, et al. T-wave area as biomarker of clinical response to cardiac resynchronization therapy. Europace. 2016;18(7):1077–85. https://doi.org/10.1093/europace/euv259.

    Article  PubMed  Google Scholar 

  25. Atwater BD, Emerek K, Sorensen PL, Hansen SM, Loring Z, Graff C, et al. PR Prolongation predicts inadequate resynchronization with biventricular pacing in left bundle branch block. Pacing Clin Electrophysiol. 2019;42(11):1477–85. https://doi.org/10.1111/pace.13802.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Salden F, Kutyifa V, Stockburger M, Prinzen FW, Vernooy K. Atrioventricular dromotropathy: evidence for a distinctive entity in heart failure with prolonged PR interval? Europace. 2018;20(7):1067–77. https://doi.org/10.1093/europace/eux207.

    Article  PubMed  Google Scholar 

  27. Linde C, Abraham WT, Gold MR, St John Sutton M, Ghio S, Daubert C, et al. Randomized trial of cardiac resynchronization in mildly symptomatic heart failure patients and in asymptomatic patients with left ventricular dysfunction and previous heart failure symptoms. J Am Coll Cardiol. 2008;52(23):1834–43. https://doi.org/10.1016/j.jacc.2008.08.027.

    Article  PubMed  Google Scholar 

  28. Moss AJ, Hall WJ, Cannom DS, Klein H, Brown MW, Daubert JP, et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med. 2009;361(14):1329–38. https://doi.org/10.1056/NEJMoa0906431.

    Article  PubMed  Google Scholar 

  29. Tang AS, Wells GA, Talajic M, Arnold MO, Sheldon R, Connolly S, et al. Cardiac-resynchronization therapy for mild-to-moderate heart failure. N Engl J Med. 2010;363(25):2385–95. https://doi.org/10.1056/NEJMoa1009540.

    Article  CAS  PubMed  Google Scholar 

  30. van der Bijl P, Khidir M, Leung M, Mertens B, Ajmone Marsan N, Delgado V, et al. Impact of QRS complex duration and morphology on left ventricular reverse remodelling and left ventricular function improvement after cardiac resynchronization therapy. Eur J Heart Fail. 2017;19(9):1145–51. https://doi.org/10.1002/ejhf.769.

    Article  PubMed  Google Scholar 

  31. Khidir MJ, Delgado V, Ajmone Marsan N, Schalij MJ, Bax JJ. QRS duration versus morphology and survival after cardiac resynchronization therapy. ESC Heart Fail. 2017;4(1):23–30. https://doi.org/10.1002/ehf2.12122.

    Article  PubMed  Google Scholar 

  32. Rickard J, Zardkoohi O, Popovic Z, Verhaert D, Sraow D, Baranowski B, et al. QRS fragmentation is not associated with poor response to cardiac resynchronization therapy. Ann Noninvasive Electrocardiol. 2011;16(2):165–71. https://doi.org/10.1111/j.1542-474X.2011.00424.x.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Eschalier R, Ploux S, Ritter P, Haissaguerre M, Ellenbogen KA, Bordachar P. Nonspecific intraventricular conduction delay: Definitions, prognosis, and implications for cardiac resynchronization therapy. Heart Rhythm. 2015;12(5):1071–9. https://doi.org/10.1016/j.hrthm.2015.01.023.

    Article  PubMed  Google Scholar 

  34. Strik M, Regoli F, Auricchio A, Prinzen F. Electrical and mechanical ventricular activation during left bundle branch block and resynchronization. J Cardiovasc Transl Res. 2012;5(2):117–26. https://doi.org/10.1007/s12265-012-9351-1.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammet Dural.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Figure 1

Example of ECG-parameters in non-LBBB. Figure including normal 12-lead ECG on left and respesentative ECG-parameters evaluated in non-LBBB patients in the current study. ECG parameters included from upper-left to lower right box are; (1) QRS morphology with example of lead V1 RSR pattern indicative of RBBB morphology, (2) QRS duration measurement, (3) PR interval measurement with evident PR prolongation in example, (4) QRS area measurement with vector X-axis displayed. QRS area requiring area measurement in X-, Y- and Z-axis and calculation of total QRS area according to formula: (QRS areaX2 + QRS areaY2 + QRS areaZ2)1/2, (5) fQRS assessment and (6) LVAT measurement from notch or slurring to end of the QRS complex. The 12-lead ECG is representative of the QRS duration, QRS area and LVAT measurement. fQRS fragmented QRS, LVAT left ventricular activation time, non-LBBB non-left bundle branch block, RBBB right bundle branch block.(PNG 176 kb)

High resolution image (TIF 274 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dural, M., van Stipdonk, A.M.W., Salden, F.C.W.M. et al. Association of ECG characteristics with clinical and echocardiographic outcome to CRT in a non-LBBB patient population. J Interv Card Electrophysiol 62, 9–19 (2021). https://doi.org/10.1007/s10840-020-00866-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-020-00866-z

Keywords

Navigation