Skip to main content
Log in

Clinical outcomes after AF cardioversion in patients presenting left atrial sludge in trans-esophageal echocardiography

  • MULTIMEDIA REPORT
  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Background

Direct-current cardioversion (DCC) for atrial fibrillation carries a risk of stroke, probably associated with the temporary atrial stunning following cardioversion. The presence of a cardiac thrombus, usually localized in the left atrial appendage (LAA), is recognized as a clear contra-indication to the cardioversion. However, the presence of atrial sludge without LAA thrombus in trans-esophageal echocardiography (TEE) remains, for many cardiologists, a relative contra-indication to the cardioversion. The aim of this study was to evaluate the safety of DCC in patients presenting atrial sludge without LAA thrombus.

Methods

We prospectively included all consecutive patients demonstrating atrial sludge without LAA thrombus in TEE and undergoing DCC for persistent atrial fibrillation (AF). Safety of DCC was evaluated by the occurrence of clinical events at 1 month following cardioversion, i.e., up to the end of the atrial stunning period, as assessed by clinical examination and the standardized and validated Questionnaire for Verifying Stroke-Free Status (QVSFS).

Results

Over a period of 2 years, 21 patients presenting atrial sludge without LAA thrombus underwent DCC for AF. During the follow-up period of 1 month after DCC, no clinical embolic event, cardiac event, or unscheduled consultations/hospitalizations occurred. At 1 month, 67% of the patients remained in sinus rhythm.

Conclusion

No clinical event occurred in patients demonstrating atrial sludge without thrombus and undergoing DCC for AF. These findings support current guidelines that only keep atrial thrombus as a contraindication to cardioversion, but warrant further investigation in large studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fatkin D, Kuchar DL, Thorburn CW, Feneley MP. Transesophageal echocardiography before and during direct current cardioversion of atrial fibrillation: evidence for "atrial stunning" as a mechanism of thromboembolic complications. J Am Coll Cardiol. 1994;23:307–16.

    Article  CAS  Google Scholar 

  2. Grimm RA, Stewart WJ, Black IW, Thomas JD, Klein AL. Should all patients undergo transesophageal echocardiography before electrical cardioversion of atrial fibrillation? J Am Coll Cardiol. 1994;23:533–41.

    Article  CAS  Google Scholar 

  3. Stein B, Halperin JL, Fuster V. Should patients with atrial fibrillation be anticoagulated prior to and chronically following cardioversion? Cardiovascular clinics. 1990;21:231–247; discussion 248-239.

  4. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, et al. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Rev Esp Cardiol (English ed). 2017;70:50.

    Google Scholar 

  5. Lowe BS, Kusunose K, Motoki H, Varr B, Shrestha K, Whitman C, et al. Prognostic significance of left atrial appendage “sludge” in patients with atrial fibrillation: a new transesophageal echocardiographic thromboembolic risk factor. J Am Soc Echocardiogr. 2014;27:1176–83.

    Article  Google Scholar 

  6. Lundstrom T, Karlsson O. Improved ventilatory response to exercise after cardioversion of chronic atrial fibrillation to sinus rhythm. Chest. 1992;102:1017–22.

    Article  CAS  Google Scholar 

  7. Van Gelder IC, Crijns HJ, Blanksma PK, Landsman ML, Posma JL, Van Den Berg MP, et al. Time course of hemodynamic changes and improvement of exercise tolerance after cardioversion of chronic atrial fibrillation unassociated with cardiac valve disease. Am J Cardiol. 1993;72:560–6.

    Article  Google Scholar 

  8. Fumagalli S, Gabbai D, Francini S, Rinaldi MC, Pedri S, Baldasseroni S, et al. External cardioversion of atrial fibrillation causes an early improvement of cardiac performance: a longitudinal strain analysis study. J Cardiovasc Echography. 2014;24:10–7.

    Article  Google Scholar 

  9. Khan IA. Atrial stunning: basics and clinical considerations. Int J Cardiol. 2003;92:113–28.

    Article  Google Scholar 

  10. Romero J, Husain SA, Kelesidis I, Sanz J, Medina HM, Garcia MJ. Detection of left atrial appendage thrombus by cardiac computed tomography in patients with atrial fibrillation: a meta-analysis. Circ Cardiovasc Imaging. 2013;6:185–94.

    Article  Google Scholar 

  11. Cohen TJ, Ibrahim B, Denier D, Haji A, Quan W. Active compression cardioversion for refractory atrial fibrillation. Am J Cardiol. 1997;80:354–5.

    Article  CAS  Google Scholar 

  12. Manning WJ, Silverman DI, Katz SE, Riley MF, Come PC, Doherty RM, et al. Impaired left atrial mechanical function after cardioversion: relation to the duration of atrial fibrillation. J Am Coll Cardiol. 1994;23:1535–40.

    Article  CAS  Google Scholar 

  13. Meschia JF, Brott TG, Chukwudelunzu FE, Hardy J, Brown RD Jr, Meissner I, et al. Verifying the stroke-free phenotype by structured telephone interview. Stroke. 2000;31:1076–80.

    Article  CAS  Google Scholar 

  14. Jones WJ, Williams LS, Meschia JF. Validating the questionnaire for verifying stroke-free status (QVSFS) by neurological history and examination. Stroke. 2001;32:2232–6.

    Article  CAS  Google Scholar 

  15. Sarfo F, Gebregziabher M, Ovbiagele B, Akinyemi R, Owolabi L, Obiako R, et al. Stroke Investigative Research Educational N. Multilingual validation of the questionnaire for verifying stroke-free status in West Africa. Stroke. 2016;47:167–72.

    Article  Google Scholar 

  16. Cappato R, Ezekowitz MD, Klein AL, Camm AJ, Ma CS, Le Heuzey JY, et al. Rivaroxaban vs. vitamin k antagonists for cardioversion in atrial fibrillation. Eur Heart J. 2014;35:3346–55.

    Article  CAS  Google Scholar 

  17. Goette A, Merino JL, Ezekowitz MD, Zamoryakhin D, Melino M, Jin J, et al. Edoxaban versus enoxaparin-warfarin in patients undergoing cardioversion of atrial fibrillation (ENSURE-AF): a randomised, open-label, phase 3b trial. Lancet. 2016;388:1995–2003.

    Article  CAS  Google Scholar 

  18. Maltagliati A, Galli CA, Tamborini G, Celeste F, Muratori M, Pepi M. Incidence of spontaneous echocontrast, ‘sludge’ and thrombi before cardioversion in patients with atrial fibrillation: new insights into the role of transesophageal echocardiography. J Cardiovasc Med (Hagerstown). 2009;10:523–8.

    Article  Google Scholar 

  19. Yarmohammadi H, Klosterman T, Grewal G, Alraies MC, Lindsay BD, Bhargava M, et al. Transesophageal echocardiography and cardioversion trends in patients with atrial fibrillation: a 10-year survey. J Am Soc Echocardiogr. 2012;25:962–8.

    Article  Google Scholar 

  20. Yarmohammadi H, Klosterman T, Grewal G, Alraies MC, Varr BC, Lindsay B, et al. Efficacy of the chads(2) scoring system to assess left atrial thrombogenic milieu risk before cardioversion of non-valvular atrial fibrillation. Am J Cardiol. 2013;112:678–83.

    Article  Google Scholar 

  21. Patel SV, Flaker G. Is early cardioversion for atrial fibrillation safe in patients with spontaneous echocardiographic contrast? Clin Cardiol. 2008;31:148–52.

    Article  CAS  Google Scholar 

  22. Maltagliati A, Galli CA, Tamborini G, Calligaris A, Doria E, Salehi R, et al. Usefulness of transoesophageal echocardiography before cardioversion in patients with atrial fibrillation and different anticoagulant regimens. Heart. 2006;92:933–8.

    Article  CAS  Google Scholar 

  23. Hajjiri M, Bernstein S, Saric M, Benenstein R, Aizer A, Dym G, et al. Atrial fibrillation ablation in patients with known sludge in the left atrial appendage. J Interv Card Electrophysiol. 2014;40:147–51.

    Article  Google Scholar 

  24. Grimm RA, Stewart WJ, Maloney JD, Cohen GI, Pearce GL, Salcedo EE, et al. Impact of electrical cardioversion for atrial fibrillation on left atrial appendage function and spontaneous echo contrast: characterization by simultaneous transesophageal echocardiography. J Am Coll Cardiol. 1993;22:1359–66.

    Article  CAS  Google Scholar 

  25. Akosah KO, Funai JT, Porter TR, Jesse RL, Mohanty PK. Left atrial appendage contractile function in atrial fibrillation. Influence of heart rate and cardioversion to sinus rhythm. Chest. 1995;107:690–6.

    Article  CAS  Google Scholar 

  26. Atwood JE, Myers J, Sullivan M, Forbes S, Sandhu S, Callaham P, et al. The effect of cardioversion on maximal exercise capacity in patients with chronic atrial fibrillation. Am Heart J. 1989;118:913–8.

    Article  CAS  Google Scholar 

  27. Van Gelder IC, Healey JS, Crijns H, Wang J, Hohnloser SH, Gold MR, et al. Duration of device-detected subclinical atrial fibrillation and occurrence of stroke in assert. Eur Heart J. 2017;38:1339–44.

    Article  Google Scholar 

  28. Go AS, Reynolds K, Yang J, Gupta N, Lenane J, Sung SH, et al. Association of burden of atrial fibrillation with risk of ischemic stroke in adults with paroxysmal atrial fibrillation: the KP-RHYTHM study. JAMA Cardiol. 2018;3:601–8.

    Article  Google Scholar 

  29. Falcone RA, Morady F, Armstrong WF. Transesophageal echocardiographic evaluation of left atrial appendage function and spontaneous contrast formation after chemical or electrical cardioversion of atrial fibrillation. Am J Cardiol. 1996;78:435–9.

    Article  CAS  Google Scholar 

  30. Kalantarian S, Ay H, Gollub RL, Lee H, Retzepi K, Mansour M, et al. Association between atrial fibrillation and silent cerebral infarctions: a systematic review and meta-analysis. Ann Intern Med. 2014;161:650–8.

    Article  Google Scholar 

  31. Bellmann B, Fiebach JB, Guttmann S, Lin T, Haeusler KG, Bathe-Peters R, et al. Incidence of mri-detected brain lesions and neurocognitive function after electrical cardioversion in anticoagulated patients with persistent atrial fibrillation. Int J Cardiol. 2017;243:239–43.

    Article  CAS  Google Scholar 

  32. Vazquez M, Santos E, Rodriguez I, Pato A, Vilar M, Arias JC, et al. Assessment of silent microembolism by magnetic resonance imaging after cardioversion in atrial fibrillation. Rev Esp Cardiol (English ed). 2012;65:139–42.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Yann Diascorn for his help.

Author information

Authors and Affiliations

Authors

Contributions

FS: design, data collection, data analysis, writing, guarantor of the paper. MB: design, data collection, data analysis. DS: critical review. PM: critical review. EF: critical review.

Corresponding author

Correspondence to Fabien Squara.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(MOV 4179 kb)

ESM 2

(MOV 6523 kb)

ESM 3

(MOV 3213 kb)

ESM 4

(MOV 3213 kb)

ESM 5

(MOV 5449 kb)

ESM 6

(MOV 4352 kb)

ESM 7

(MOV 6378 kb)

ESM 8

(MOV 6980 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Squara, F., Bres, M., Scarlatti, D. et al. Clinical outcomes after AF cardioversion in patients presenting left atrial sludge in trans-esophageal echocardiography. J Interv Card Electrophysiol 57, 149–156 (2020). https://doi.org/10.1007/s10840-019-00561-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-019-00561-8

Keywords

Navigation