Skip to main content
Log in

Improved electric insulation ability and ferromagnetic property in Nb2O5 doped BiFeO3-based multiferroic ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

0.675BiFeO3-0.3BaTiO3-0.025LaFeO3-x mol% Nb2O5 (x = 0–1.25) multiferroic lead- free ceramics, fabricated by conventional solid-state reaction, were studied to reveal the effects of Nb2O5 on the structural, morphology, dielectric, ferroelectric, magnetic and magnetoelectric properties of the BiFeO3-based ceramics. After the addition of Nb2O5, the crystal structure of as-prepared samples remained orthorhombic phase. The doping Nb5+ ion could be able to inhibit grain growth remarkably and suppress the creation of oxygen vacancies of this ceramics, which resulted in the improvement of electrical insulation by two orders of magnitude. The ferromagnetism was apparently enhanced with increasing content of Nb2O5, and the observed remanent magnetization Mr peaked at 0.022 emu/g for x = 1. Suitable amount of Nb2O5 could be beneficial to the dielectric properties, with the optimal x at 0.75, with dielectric constant εr of 918 at 100 Hz. The observed magnetoelectric coefficient αME suggested the existence of magnetoelectric coupling effect in these ceramics. The αME value almost decreased after adding Nb2O5, possibly due to the obvious degradation of ferroelectric behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463–2485 (2009). https://doi.org/10.1002/adma.200802849

    Article  CAS  Google Scholar 

  2. I. Sosnowska, T. Pterlin-Neumaier, E. Steichele, J. Phys. C 15, 4835–4845 (1982)

    Article  CAS  Google Scholar 

  3. J. G. Wu, Z. Fan, D. q. Xiao, J. g. Zhu, J. Wang, Prog. Mater. Sci. 84, 335–402 (2016). https://doi.org/10.1016/j.pmatsci.2016.09.001

  4. A.K. Pradhan, K. Zhang, D. Hunter, J.B. Dadson, G.B. Loutts, P. Bhattacharya, R. Katiyar, J. Zhang, D.J. Sellmyer, U.N. Roy, Y. Cui, A. Burger, J. Appl. Phys. 97, 093903 (2005). https://doi.org/10.1063/1.1881775

    Article  CAS  Google Scholar 

  5. B. Ruette, S. Zvyagin, A.P. Pyatakov, A. Bush, J.F. Li, V.I. Beloteiov, A.K. Zvezdin, D. Viehland, Phys. Rev. B 69, 064114 (2004). https://doi.org/10.1103/PhysRevB.69.064114

    Article  CAS  Google Scholar 

  6. B.W. Xun, N. Wang, B.P. Zhang, X.Y. Chen, Y.Q. Zheng, W.S. Jin, R. Mao, K. Liang, Ceram. Int. 45, 24382–24391 (2019). https://doi.org/10.1016/j.ceramint.2019.08.157

    Article  CAS  Google Scholar 

  7. M.M. Kumar, S. Srinath, G.S. Kumar, S.V. Suryanarayana, J. Magn. Magn. Mater. 188, 203–212 (1998). https://doi.org/10.1016/S0304-8853(98)00167-X

    Article  Google Scholar 

  8. A. Marzouki, V. Loyau, P. Gemeiner, L. Bessais, B. Dkhil, A. Megriche, J. Magn. Magn. Mater. 498, 166137 (2020). https://doi.org/10.1016/j.jmmm.2019.166137

    Article  CAS  Google Scholar 

  9. Y. Tian, F. Xue, Q. Fu, D. Zhou, Y. Hu, L. Zhou, Z. Zheng, Z. Xin, J. Magn. Magn. Mater. 435, 154–161 (2017). https://doi.org/10.1016/j.jmmm.2017.03.024

    Article  CAS  Google Scholar 

  10. S. Divya Lakshmi, I. B. Shameem Banu, Int. J. Appl. Ceram. Technol. 16, 1622–1631 (2019). https://doi.org/10.1111/ijac.13201

  11. Q. Zhang, X.H. Zhu, Y.H. Xu, H.B. Gao, Y.J. Xiao, D.Y. Liang, J.L. Zhu, J.G. Zhu, D.Q. Xiao, J. Alloys Compd. 546, 57–62 (2013). https://doi.org/10.1016/j.jallcom.2012.08.067

    Article  CAS  Google Scholar 

  12. C.R. Zhou, H.B. Yang, Q. Zhou, Z.Y. Cen, W.Z. Li, C.L. Yuan, H. Wang, Ceram. Int. 39, 4307–4311 (2013). https://doi.org/10.1016/j.ceramint.2012.11.012

    Article  CAS  Google Scholar 

  13. X.L. Wu, L.L. Luo, N. Jiang, X.C. Wu, Q.J. Zheng, Bull. Mater. Sci. 39, 737–742 (2016). https://doi.org/10.1007/s12034-016-1198-7

    Article  CAS  Google Scholar 

  14. M. Zhang, X.Y. Zhang, S. Das, Z.M.M. Wang, X.W. Qi, Q. Du, J. Mater. Chem. C 7, 10551–10560 (2019). https://doi.org/10.1039/c9tc02650a

    Article  CAS  Google Scholar 

  15. X.W. Qi, M. Zhang, X.Y. Zhang, Y.H. Gu, H.E. Zhu, W.C. Yang, Y. Li, RSC Adv. 7, 51801–51806 (2017). https://doi.org/10.1039/c7ra10563k

    Article  CAS  Google Scholar 

  16. H. Singh, K. L. Yadav, J. Phys. Condens. Matter 23, 385901 (2011). https://doi.org/10.1088/0953-8984/23/38/385901

  17. C. F. Chung, J. P. Lin, J. M. Wu, Appl. Phys. Lett. 88, 242909 (2006). https://doi.org/10.1063/1.2214138

  18. J. Chen, B. Xu, X.Q. Liu, T.T. Gao, L. Bellaiche, X.M. Chen, Adv. Funct. Mater. 29, 1806399 (2019). https://doi.org/10.1002/adfm.201806399

    Article  CAS  Google Scholar 

  19. I.O. Troyanchuk, N.V. Tereshko, D.V. Karpinsky, A.L. Kholkin, M. Kopcewicz, K. Bärner, J. Appl. Phys. 109, 114102 (2011). https://doi.org/10.1063/1.3594251

    Article  CAS  Google Scholar 

  20. T. Wang, S.H. Song, Q. Ma, M.L. Tan, J.J. Chen, J. Alloy. Compd. 795, 60–68 (2019). https://doi.org/10.1016/j.jallcom.2019.04.327

    Article  CAS  Google Scholar 

  21. Y.J. Shi, F. Yan, X. He, K.W. Huang, B. Shen, J.W. Zhai, J. Am. Ceram. Soc. 103, 6245–6254 (2020). https://doi.org/10.1111/jace.17325

    Article  CAS  Google Scholar 

  22. Z.J. Li, W. Peng, C.R. Zhou, Q.N. Li, L. Yang, J.W. Xua, G.H. Chen, C.L. Yuan, G.H. Rao, Ceram. Int. 44, 14439–14445 (2018)

    Article  CAS  Google Scholar 

  23. J.Y. Yi, J.K. Lee, K.S. Hong, Jpn. J. Appl. Phys. 43, 6188–6192 (2004). https://doi.org/10.1143/JJAP.43.6188

    Article  CAS  Google Scholar 

  24. F. Kang, L. X. Zhang, L. Q. He, Q. Z. Sun, Z. P. Wang, R. R. Kang, P. Mao, C. Z. Zhu, J. P. Wang, J. Alloys Compd. 864, 158917 (2021)

  25. Y.Q. Guo, P. Xiao, R. Wen, Y. Wan, Q.J. Zheng, D.L. Shi, K.H. Lam, M.L. Liu, D.M. Lin, J. Mater. Chem. C 3, 5811–5824 (2015). https://doi.org/10.1039/c5tc00507h

    Article  CAS  Google Scholar 

  26. N. Kumar, A. Shukla, R.N.P. Choudhary, J. Alloy. Compd. 747, 895–904 (2018). https://doi.org/10.1016/j.jallcom.2018.03.114

    Article  CAS  Google Scholar 

  27. Z.Q. Hu, M.Y. Li, Y. Yu, J. Liu, L. Pei, J. Wang, X.L. Liu, B.F. Yu, X.Z. Zhao, Solid State Commun. 150, 1088–1091 (2010). https://doi.org/10.1016/j.ssc.2010.03.015

    Article  CAS  Google Scholar 

  28. Bappa Sona Kar, M.N. Goswami, P.C. Jana, J. Alloy. Compd. 861, 157960 (2021)

  29. Y.J. Lee, J.S. Kim, S.H. Han, H.W. Kang, H.G. Lee, C.I. Cheon, J. Korean Phys. Soc. 61, 947–950 (2012). https://doi.org/10.3938/jkps.61.947

    Article  CAS  Google Scholar 

  30. J. G. Wu, G. Q. Kang, J. Wang, Appl. Phys. Lett. 95, 192901 (2009). https://doi.org/10.1063/1.3259655

  31. D.M. Lin, Q.J. Zheng, Y. Li, Y. Wan, Q. Li, W. Zhou, J. Eur. Ceram. Soc. 33, 3023–3036 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.06.029

    Article  CAS  Google Scholar 

  32. S.D. Zhou, Y. Li, H. Wu, L. Zhu, Y.G. Wang, J. Magn. Magn. Mater. 476, 472–477 (2019). https://doi.org/10.1016/j.jmmm.2019.01.024

    Article  CAS  Google Scholar 

  33. Y.K. Wang, T.Y. Tseng, P. Lin, Appl. Phys. Lett. 80, 3790–3792 (2002). https://doi.org/10.1063/1.1480099

    Article  CAS  Google Scholar 

  34. J. Wu, J. Wang, J. Am. Ceram. Soc. 93, 2795–2803 (2010). https://doi.org/10.1111/j.1551-2916.2010.03816.x

    Article  CAS  Google Scholar 

  35. Y. Bai, H. Zhao, J. Chen, Y. Sun, S. Zhao, Ceram. Int. 42, 10304–10309 (2016). https://doi.org/10.1016/j.ceramint.2016.03.166

    Article  CAS  Google Scholar 

  36. S.X. Huo, S.L. Yuan, Z.M. Tian, C.H. Wang, Y. Qiu, J. Am. Ceram. Soc. 95, 1383–1387 (2012). https://doi.org/10.1111/j.1551-2916.2011.04992.x

    Article  CAS  Google Scholar 

  37. T. Zheng, Y. Ding, J.G. Wu, J Mater Sci: Mater Electron. 28, 11534–11542 (2017)

    CAS  Google Scholar 

  38. L.Y. Zhang, J. Zhang, Y.F. Chang, G.L. Yuan, B. Yang, S.T. Zhang, J. Am. Ceram. Soc. 99, 2989–2994 (2016)

    Article  CAS  Google Scholar 

  39. T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Nano Lett. 7(3), 766–772 (2007). https://doi.org/10.1021/nl063039w

    Article  CAS  Google Scholar 

  40. Y.J. Wu, X.K. Chen, J. Zhang, X.J. Chen, J. Appl. Phys. 111, 053927 (2012). https://doi.org/10.1063/1.3693531

    Article  CAS  Google Scholar 

  41. S.K. Pradhan, B.K. Roul, Phys. B: Condens. Matter 406, 3313–3317 (2011). https://doi.org/10.1016/j.physb.2011.05.049

    Article  CAS  Google Scholar 

  42. S. Jangra, S. Sanghi, A. Agarwal, M. Rangi, K. Kaswan, Ceram. Int. 44, 7683–7693 (2018). https://doi.org/10.1016/j.ceramint.2018.01.194

    Article  CAS  Google Scholar 

  43. D.J. Gao, K.W. Kwok, D.M. Lin, H.L.W. Chan, J. Phys. Appl. Phys. 42, 035411 (2009). https://doi.org/10.1088/0022-3727/42/3/035411

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China (No.51972048), the Fundamental Research Funds for the Central Universities (No. N2123003) and the Open Research Subject of Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province (No.HKDE201905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiwei Qi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 220 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhou, C., Zhang, J. et al. Improved electric insulation ability and ferromagnetic property in Nb2O5 doped BiFeO3-based multiferroic ceramics. J Electroceram 47, 134–140 (2021). https://doi.org/10.1007/s10832-021-00267-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-021-00267-2

Keywords

Navigation