Skip to main content

Advertisement

Log in

Energy harvesting with a cymbal type piezoelectric transducer from low frequency compression

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In this paper a piezoelectric energy harvester based on a Cymbal type structure is presented. A piezoelectric disc ∅35 mm was confined between two convex steel discs ∅35 mm acting as a force amplifier delivering stress to the PZT and protecting the harvester. Optimization was performed and generated voltage and power of the harvester were measured as functions of resistive load and applied force. At 1.19 Hz compression frequency with 24.8 N force a Cymbal type harvester with 250 μm thick steel discs delivered an average power of 0.66 mW. Maximum power densities of 1.37 mW/cm3 and 0.31 mW/cm3 were measured for the piezo element and the whole component, respectively. The measured power levels reported in this article are able to satisfy the demands of some monitoring electronics or extend the battery life of a portable device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Krikke, Sunrise for energy harvesting products. IEEE Pervasive Comput. 4(1), 4–5 (2005)

    Article  Google Scholar 

  2. J. Shunong, H. Yuantai, Analysis of a piezoelectric bimorph plate with a central-attached mass as an energy harvester. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 54(7), 1463–1469 (2007)

    Article  Google Scholar 

  3. J.C. Parkm J.Y. Park, Micromachined piezoelectric energy harvester with low vibration, Applications of Ferroelectrics, ISAF 2009. 18th IEEE International Symposium, (2009) 1–6.

  4. X. Dai, Y. Wen, P. Li, J. Yang, M. Li, Energy harvesting from mechanical vibrations using multiple magnetostrictive/piezoelectric composite transducers. Sensor Actuator A 166, 94–101 (2011)

    Article  Google Scholar 

  5. B.C. Yen, J.H. Lang, A variable-capacitance vibration-to-electric energy harvester. IEEE Trans. Circuits Syst.-I: Regular Papers 53(2), 288–295 (2006)

    Article  Google Scholar 

  6. J.A. Paradiso, T. Starner, Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput 4(1), 18–27 (2005)

    Article  Google Scholar 

  7. S.P. Beeby, M.J. Tudor, N.M. White, Energy harvesting vibration sources for microsystems applications. Meas. Sci. Tech. 17, 175–195 (2006)

    Article  Google Scholar 

  8. M. Sobocinski, M. Leinonen, J. Juuti, H. Jantunen, Monomorph piezoelectric wideband energy harvester integrated into LTCC. J. Eur. Ceram. Soc. 31(5), 789–794 (2011)

    Article  CAS  Google Scholar 

  9. H.S. Kim, J.-H. Kim, J. Kim, A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 12(6), 1129–1141 (2011)

    Article  Google Scholar 

  10. C. Sun, L. Qin, F. Li, Q.-M. Wang, Piezoelectric energy harvesting using single crystal Pb(Mg1/3Nb2/3)O 3-xPbTiO3 (PMN-PT) device. J. Intell. Mater. Syst. Struct. 20, 559–568 (2009)

    Article  CAS  Google Scholar 

  11. H. Kim, S. Priya, H. Stephanou, K. Uchino, Consideration of impedance matching techniques for efficient piezoelectric energy harvesting. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(9), 1851–1859 (2007)

    Article  Google Scholar 

  12. L.M. Swallow, J.K. Luo, E. Siores, I. Patel, D. Dodds, A piezoelectric fibre composite based energy harvesting device for potential wearable applications. Smart Mater. Struct. 17, 025017 (2008)

    Article  Google Scholar 

  13. M. Ericka, D. Vasic, F. Costa, G. Poulain, Predictive energy harvesting from mechanical vibration using a circular piezoelectric membrane. J. IEEE Ultrason. Symp. 2, 946–949 (2005)

    Article  Google Scholar 

  14. H. Hu, H. Xue, Y. Hu, A spiral-shaped harvester with an improved harvesting element and an adaptive storage circuit and an adaptive storage circuit. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(6), 1177–1187 (2007)

    Article  Google Scholar 

  15. N.S. Shenck, J.A. Paradiso, Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro. 21(3), 30–42 (2001)

    Article  Google Scholar 

  16. J. Kymissis, C. Kendall, J. Paradiso, N. Gershenfeld, Parasitic power harvesting in shoes. J. Wearable Computers, 1998. Digest of Papers. Digital Object Identifier, Second International Symposium on, (1998) pp. 132–139

  17. L. Mateu, F. Moll, Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts. J. Intell. Mater. Syst. Struct. 16, 835–845 (2005)

    Article  Google Scholar 

  18. S.R. Platt, S. Farritor, H. Haider, On low-frequency electric power generation with PZT ceramics. IEEE/ASME Trans. Mechatron. 10(2), 240–252 (2005)

    Article  Google Scholar 

  19. A. Dogan, S. Yoshikawa, K. Uchino, R.E. Newnham, The effect of geometry on the characteristics of the moonie transducer and reliability issue. J. Ultrason. Symp. 2, 935–939 (2004)

    Google Scholar 

  20. A. Dogan, K. Uchino, R.E. Newnham, Composite piezoelectric transducer with truncated conical endcaps cymbal. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(3), 597–605 (1995)

    Article  Google Scholar 

  21. J. Zhang, W.J. Hughes, A.C. Hladky-Hennion, R.E. Newnham, Concave cymbal transducers. J. Appl. Ferroelectr., 252–255 (1998).

  22. R.E. Newnham, A. Dogan, D.C. Markley, J.F. Tressler, J. Zhang, E. Uzgur, R.J. Meyer Jr., A.-C. Hladky-Hennion, W.J. Hughes, Size effects in capped ceramic underwater sound projectors. J. Oceans’02 MTS/IEEE 4, 2315–2321 (2002)

    Article  Google Scholar 

  23. Y. Ke, T. Guo, J. Li, A new-style, slotted-Cymbal transducer with large displacement and high energy transmission. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(9), 1171–1177 (2004)

    Article  Google Scholar 

  24. P. Ochoa, M. Villegas, J.L. Pons, P. Leidinger, J.F. Fernández, Tunability of cymbals as piezocomposite transducers. J. Electroceram. 14(3), 221–229 (2005)

    Article  Google Scholar 

  25. M. Narayanan, R.W. Schwartz, Design, fabrication and finite element modelling of a new wagon wheel flextensional transducer. J. Electroceram. 24(3), 205–213 (2010)

    Article  Google Scholar 

  26. H.W. KIM, A. Batra, S. Priya, K. Uchino, D. Markley, R.E. Newnham, H.F. Hofmann, Energy harvesting using a piezoelectric “Cymbal” transducer in dynamic environment. Jpn. J. Appl. Phys. 43(9A), 6178–6183 (2004)

    Article  CAS  Google Scholar 

  27. H. KIM, S. Priya, K. Uchino, Modeling of piezoelectric energy harvesting using cymbal transducers. Jpn. J. Appl. Phys. 45(7), 5836–5840 (2006)

    Article  CAS  Google Scholar 

  28. B. Ren, S. W. Or, X. Zhao, H. Luo, Energy harvesting using a modified rectangular cymbal transducer based on 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 single crystal. J. Appl. Phys. 107(3), 034501–034501–4 (2010)

    Google Scholar 

  29. D.E. Lieberman, M. Venkadesan, W.A. Werbel, A.I. Daoud, S. D’Andrea, I.S. Davis, R.O. Mang’Eni, Y. Pitsiladis, Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature 463, 531–535 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge the Enerfi project (number 40429/09) supported by Tekes, Pulse Electronics Oy, and Urho Viljamaa Oy. J. Palosaari gratefully acknowledges TES (Finnish Foundation for Technology Promotion) and Tauno Tönningin foundation. Author JJ gratefully acknowledges funding of the Academy of Finland (project number 124011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaakko Palosaari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palosaari, J., Leinonen, M., Hannu, J. et al. Energy harvesting with a cymbal type piezoelectric transducer from low frequency compression. J Electroceram 28, 214–219 (2012). https://doi.org/10.1007/s10832-012-9713-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-012-9713-8

Keywords

Navigation