Skip to main content

Advertisement

Log in

Flexible models for spike count data with both over- and under- dispersion

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

A key observation in systems neuroscience is that neural responses vary, even in controlled settings where stimuli are held constant. Many statistical models assume that trial-to-trial spike count variability is Poisson, but there is considerable evidence that neurons can be substantially more or less variable than Poisson depending on the stimuli, attentional state, and brain area. Here we examine a set of spike count models based on the Conway-Maxwell-Poisson (COM-Poisson) distribution that can flexibly account for both over- and under-dispersion in spike count data. We illustrate applications of this noise model for Bayesian estimation of tuning curves and peri-stimulus time histograms. We find that COM-Poisson models with group/observation-level dispersion, where spike count variability is a function of time or stimulus, produce more accurate descriptions of spike counts compared to Poisson models as well as negative-binomial models often used as alternatives. Since dispersion is one determinant of parameter standard errors, COM-Poisson models are also likely to yield more accurate model comparison. More generally, these methods provide a useful, model-based framework for inferring both the mean and variability of neural responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amarasingham, A., Chen, T.-L., Geman, S., Harrison, M. T., & Sheinberg, D. L. (2006). Spike count reliability and the Poisson hypothesis. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 26(3), 801–809. doi:10.1523/JNEUROSCI.2948-05.2006.

    Article  CAS  Google Scholar 

  • Arieli, A., Sterkin, A., Grinvald, A., & Aertsen, A. (1996). Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science, 273(5283), 1868–1871. doi:10.1126/science.273.5283.1868.

    Article  CAS  PubMed  Google Scholar 

  • Averbeck, B. B., Latham, P. E., & Pouget, A. (2006). Neural correlations, population coding and computation. Nature Reviews. Neuroscience, 7(5), 358–366.

    Article  CAS  PubMed  Google Scholar 

  • Azouz, R., & Gray, C. M. (1999). Cellular mechanisms contributing to response variability of cortical neurons in vivo. Journal of Neuroscience, 19(6), 2209.

    CAS  PubMed  Google Scholar 

  • Bair, W., & Koch, C. (1996). Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Computation, 8(6), 1185–1202. doi:10.1162/neco.1996.8.6.1185.

    Article  CAS  PubMed  Google Scholar 

  • Barbieri, R., Quirk, M. C., Frank, L. M., Wilson, M. A., & Brown, E. N. (2001). Construction and analysis of non-Poisson stimulus-response models of neural spiking activity. Journal of Neuroscience Methods, 105(1), 25–37. doi:10.1016/S0165-0270(00)00344-7.

    Article  CAS  PubMed  Google Scholar 

  • Berry, M. J., & Meister, M. (1998). Refractoriness and neural precision. The Journal of Neuroscience : The official Journal of the Society for Neuroscience, 18(6), 2200–2211.

    CAS  Google Scholar 

  • Berry, M. J., Warland, D. K., & Meister, M. (1997). The structure and precision of retinal spike trains. Proceedings of the National Academy of Sciences, 94(10), 5411–5416. doi:10.1073/pnas.94.10.5411.

    Article  CAS  Google Scholar 

  • Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of Neurophysiology, 94(5), 3637–3642. doi:10.1152/jn.00686.2005.

    Article  PubMed  Google Scholar 

  • Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1992). The analysis of visual motion: a comparison of neuronal and psychophysical performance. Journal of Neuroscience, 12(12), 4745.

    CAS  PubMed  Google Scholar 

  • Brown, E., Barbieri, R., Eden, U., & Frank, L. (2003). Likelihood methods for neural data analysis. In J. Feng (Ed.), Computational Neuroscience: A comprehensive approach (pp. 253–286). London: Chapman and Hall.

    Google Scholar 

  • Cameron, A. C., & Trivedi, P. K. (2001). Essentials of count data regression. In A companion to theoretical econometrics (Vol. 331). Blackwell Publishing Ltd.

  • Carandini, M. (2004). Amplification of trial-to-trial response variability by neurons in visual cortex. PLoS Biology, 2(9), E264. doi:10.1371/journal.pbio.0020264.

    Article  PubMed  PubMed Central  Google Scholar 

  • Churchland, M. M., Yu, B. M., Ryu, S. I., Santhanam, G., & Shenoy, K. V. (2006). Neural variability in premotor cortex provides a signature of motor preparation. Journal of Neuroscience, 26(14), 3697.

    Article  CAS  PubMed  Google Scholar 

  • Churchland, M. M., Yu, B. M., Cunningham, J. P., Sugrue, L. P., Cohen, M. R., Corrado, G. S., et al. (2010). Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nature Neuroscience, 13(3), 369–378. doi:10.1038/nn.2501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Churchland, A. K., Kiani, R., Chaudhuri, R., Wang, X. J., Pouget, A., & Shadlen, M. N. (2011). Variance as a signature of neural computations during decision making. Neuron, 69(4), 818–831. doi:10.1016/j.neuron.2010.12.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen, M. R., & Kohn, A. (2011). Measuring and interpreting neuronal correlations. Nature Neuroscience, 14(7), 811–819. doi:10.1038/nn.2842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cronin, B., Stevenson, I. H., Sur, M., & Kording, K. P. (2010). Hierarchical Bayesian modeling and Markov Chain Monte Carlo sampling for tuning-curve analysis. Journal of Neurophysiology, 103(1), 591.

    Article  PubMed  Google Scholar 

  • Czanner, G., Eden, U. T., Wirth, S., Yanike, M., Suzuki, W. A., & Brown, E. N. (2008). Analysis of between-trial and within-trial neural spiking dynamics. Journal of Neurophysiology, 99(5), 2672–2693. doi:10.1152/jn.00343.2007.

    Article  PubMed  PubMed Central  Google Scholar 

  • De Boor, C. (1978). A practical guide to splines. Applied mathematical sciences 27. Verlag: Springer.

    Book  Google Scholar 

  • del Castillo, J., & Pérez-Casany, M. (2005). Overdispersed and underdispersed Poisson generalizations. Journal of Statistical Planning and Inference, 134(2), 486–500. doi:10.1016/j.jspi.2004.04.019.

    Article  Google Scholar 

  • Deweese, M. R., & Zador, A. M. (2004). Shared and private variability in the auditory cortex. Journal of Neurophysiology, 92(3), 1840–1855. doi:10.1152/jn.00197.2004.

    Article  PubMed  Google Scholar 

  • DeWeese, M. R., Wehr, M., & Zador, A. M. (2003). Binary spiking in auditory cortex. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 23(21), 7940–7949.

    CAS  Google Scholar 

  • Dimatteo, I., Genovese, C. R., & Kass, R. E. (2001). Bayesian curve-fitting with free-knot splines. Biometrika, 88(4), 1055–1071. doi:10.1093/biomet/88.4.1055.

    Article  Google Scholar 

  • Eden, U. T., & Kramer, M. a. (2010). Drawing inferences from Fano factor calculations. Journal of Neuroscience Methods, 190(1), 149–152. doi:10.1016/j.jneumeth.2010.04.012.

    Article  PubMed  Google Scholar 

  • Eden, U. T., Frank, L. M., Barbieri, R., Solo, V., & Brown, E. N. (2004). Dynamic analysis of neural encoding by point process adaptive filtering. Neural Computation, 16(5), 971–998. doi:10.1162/089976604773135069.

    Article  PubMed  Google Scholar 

  • Ermentrout, G. B., Galán, R. F., & Urban, N. N. (2008). Reliability, synchrony and noise. Trends in Neurosciences, 31(8), 428–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faisal, A. A., Selen, L. P. J., & Wolpert, D. M. (2008). Noise in the nervous system. Nature Reviews. Neuroscience, 9(4), 292–303. doi:10.1038/nrn2258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, Y., Buesing, L., Shenoy, K. V, & Cunningham, J. P. (2015). High-dimensional neural spike train analysis with generalized count linear dynamical systems. In NIPS.

  • Gelman, A., Jakulin, A., Pittau, M. G., & Su, Y.-S. (2008). A weakly informative default prior distribution for logistic and other regression models. The Annals of Applied Statistics, 2(4), 1360–1383. http://projecteuclid.org/euclid.aoas/1231424214. Accessed 30 July 2015.

    Article  Google Scholar 

  • Goris, R. L. T., Movshon, J. A., & Simoncelli, E. P. (2014). Partitioning neuronal variability. Nature Neuroscience, 17(6), 858–65. doi:10.1038/nn.3711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gourieroux, C., Monfort, A., & Trognon, A. (1984). Pseudo maximum likelihood methods: applications to Poisson models. Econometrica, 52(3), 701–720.

    Article  Google Scholar 

  • Harris, K. D., Csicsvari, J., Hirase, H., Dragoi, G., & Buzsáki, G. (2003). Organization of cell assemblies in the hippocampus. Nature, 424(6948), 552–556.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman, M., & Gelman, A. (2014). The no-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15, 30.

    Google Scholar 

  • Hoyer, P. O., Hyvarinen, A., & Hyvärinen, A. (2003). Interpreting neural response variability as Monte Carlo sampling of the posterior (Vol. 15, pp. 277–284,). MIT Press.

  • Hussar, C., & Pasternak, T. (2010). Trial-to-trial variability of the prefrontal neurons reveals the nature of their engagement in a motion discrimination task. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21842–7. doi:10.1073/pnas.1009956107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadane, J. B., Shmueli, G., Minka, T. P., Borle, S., & Boatwright, P. (2006). Conjugate analysis of the Conway-Maxwell-Poisson distribution. Bayesian Analysis, 1(2), 363–374. http://projecteuclid.org/euclid.ba/1340371067. Accessed 11 December 2015.

    Article  Google Scholar 

  • Kara, P., Reinagel, P., & Reid, R. C. (2000). Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron, 27(3), 635–646. doi:10.1016/S0896-6273(00)00072-6.

    Article  CAS  PubMed  Google Scholar 

  • Kass, R. E., & Ventura, V. (2001). A spike-train probability model. Neural Computation, 13(8), 1713–1720.

    Article  CAS  PubMed  Google Scholar 

  • Kass, R. E., Ventura, V., & Cai, C. (2003). Statistical smoothing of neuronal data. Network (Bristol, England), 14(1), 5–15. http://www.ncbi.nlm.nih.gov/pubmed/12613549. Accessed 29 October 2015.

    Article  Google Scholar 

  • Kaufman, C. G., Ventura, V., & Kass, R. E. (2005). Spline-based non-parametric regression for periodic functions and its application to directional tuning of neurons, 24(14), 2255–2265.

  • Keat, J., Reinagel, P., Reid, R. C., & Meister, M. (2001). Predicting every spike a model for the responses of visual neurons. Neuron, 30(3), 803–817.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, R. C., Smith, M. A., Kass, R. E., & Lee, T. S. (2010). Local field potentials indicate network state and account for neuronal response variability. Journal of Computational Neuroscience, 29(3), 567–579. doi:10.1007/s10827-009-0208-9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kohn, A., & Movshon, J. A. (2003). Neuronal adaptation to visual motion in area MT of the macaque. Neuron, 39(4), 681–691. doi:10.1016/S0896-6273(03)00438-0.

    Article  CAS  PubMed  Google Scholar 

  • Kottas, A., Behseta, S., Moorman, D. E., Poynor, V., & Olson, C. R. (2012). Bayesian nonparametric analysis of neuronal intensity rates. Journal of Neuroscience Methods, 203(1), 241–53. doi:10.1016/j.jneumeth.2011.09.017.

    Article  PubMed  Google Scholar 

  • Koyama, S. (2015). On the spike train variability characterized by variance-to-mean power relationship. Neural Computation, 27(7), 1530–48. doi:10.1162/NECO_a_00748.

    Article  PubMed  Google Scholar 

  • Lansky, P., & Vaillant, J. (2000). Stochastic model of the overdispersion in place cell discharge. Biosystems, 58(1), 27–32.

    Article  CAS  PubMed  Google Scholar 

  • Lee, D., Port, N. L., Kruse, W., & Georgopoulos, A. P. (1998). Variability and correlated noise in the discharge of neurons in motor and parietal areas of the primate cortex. Journal of Neuroscience, 18(3), 1161–1170. http://www.jneurosci.org/content/18/3/1161.abstract?ijkey=bd8ccb3d3a84873b46d8a3414a579c19586b02c6&keytype2=tf_ipsecsha. Accessed 11 November 2015.

    CAS  PubMed  Google Scholar 

  • Maimon, G., & Assad, J. a. (2009). Beyond Poisson: increased spike-time regularity across primate parietal cortex. Neuron, 62(3), 426–440. doi:10.1016/j.neuron.2009.03.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mainen, Z. F., & Sejnowski, T. J. (1995). Reliability of spike timing in neocortical neurons. Science, 268(5216), 1503–1506.

    Article  CAS  PubMed  Google Scholar 

  • Mandelblat-Cerf, Y., Paz, R., & Vaadia, E. (2009). Trial-to-trial variability of single cells in motor cortices is dynamically modified during visuomotor adaptation. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 29(48), 15053–62. doi:10.1523/JNEUROSCI.3011-09.2009.

    Article  CAS  Google Scholar 

  • Masquelier, T. (2013). Neural variability, or lack thereof. Frontiers in Computational Neuroscience, 7(February), 7. doi:10.3389/fncom.2013.00007.

    PubMed  PubMed Central  Google Scholar 

  • Minka, T. T. P., Shmueli, G., Kadane, J. B. J., Borle, S., & Boatwright, P. (2003). Computing with the COM-Poisson distribution., PA: Department of, (776). http://lib.stat.cmu.edu/cmu-stats/tr/tr776/tr776.pdf

  • Moshitch, D., & Nelken, I. (2014). Using Tweedie distributions for fitting spike count data. Journal of Neuroscience Methods, 225, 13–28. doi:10.1016/j.jneumeth.2014.01.004.

    Article  PubMed  Google Scholar 

  • Nawrot, M. P. (2010). Analysis and interpretation of interval and count variability in neural spike trains. In Analysis of parallel spike trains (pp. 37–58). Springer.

  • Paninski, L., Ahmadian, Y., Ferreira, D. G., Koyama, S., Rahnama Rad, K., Vidne, M., et al. (2010). A new look at state-space models for neural data. Journal of Computational Neuroscience, 29(1), 107–126. doi:10.1007/s10827-009-0179-x.

    Article  PubMed  Google Scholar 

  • Pillow, J. W., Paninski, L., Uzzell, V. J., Simoncelli, E. P., & Chichilnisky, E. J. (2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. Journal of Neuroscience, 25(47), 11003–11013.

    Article  CAS  PubMed  Google Scholar 

  • Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E. J., & Simoncelli, E. P. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454(7207), 995–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reich, D. S., Victor, J. D., Knight, B. W., Ozaki, T., & Kaplan, E. (1997). Response variability and timing precision of neuronal spike trains in vivo. Journal of Neurophysiology, 77(5), 2836–41. http://jn.physiology.org/content/77/5/2836.abstract. Accessed 12 November 2015.

    CAS  PubMed  Google Scholar 

  • Rubin, D. B. (1981). The Bayesian bootstrap. The Annals of Statistics, 9(1), 130–134. http://projecteuclid.org/euclid.aos/1176345338. Accessed 30 October 2015.

    Article  Google Scholar 

  • Sanger, T. D. (1996). Probability density estimation for the interpretation of neural population codes. Journal of Neurophysiology, 76(4), 2790–2793.

    CAS  PubMed  Google Scholar 

  • Scaglione, A., Moxon, K. A., Aguilar, J., & Foffani, G. (2011). Trial-to-trial variability in the responses of neurons carries information about stimulus location in the rat whisker thalamus. Proceedings of the National Academy of Sciences of the United States of America, 108(36), 14956–61. doi:10.1073/pnas.1103168108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schölvinck, M. L., Saleem, A. B., Benucci, A., Harris, K. D., & Carandini, M. (2015). Cortical state determines global variability and correlations in visual cortex. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 35(1), 170–8. doi:10.1523/JNEUROSCI.4994-13.2015.

    Article  Google Scholar 

  • Scott, J., & Pillow, J. W. (2012). Fully Bayesian inference for neural models with negative-binomial spiking. In Advances in Neural Information Processing Systems (pp. 1898–1906). http://papers.nips.cc/paper/4567-fully-bayesian-inference-for-neural-models-with-negative-binomial-spiking. Accessed 27 July 2015.

  • Sellers, K. F., & Shmueli, G. (2009). A regression model for count data with observation-level dispersion. In 24th International Workshop on Statistical Modelling (IWSM).

  • Sellers, K. F., & Shmueli, G. (2010). A flexible regression model for count data. The Annals of Applied Statistics, 943–961.

  • Sellers, K. F., & Shmueli, G. (2013). Data dispersion: Now you see it… now you don’t. Communications in Statistics-Theory and Methods, 42(17), 3134–3147.

    Article  Google Scholar 

  • Sellers, K. F., Borle, S., & Shmueli, G. (2012). The COM-Poisson model for count data: a survey of methods and applications. Applied Stochastic Models in Business and Industry, 28(2), 104–116.

    Article  Google Scholar 

  • Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. Journal of Neuroscience, 18(10), 3870–3896.

    CAS  PubMed  Google Scholar 

  • Shidara, M., Mizuhiki, T., & Richmond, B. J. (2005). Neuronal firing in anterior cingulate neurons changes modes across trials in single states of multitrial reward schedules. Experimental Brain Research, 163(2), 242–5. doi:10.1007/s00221-005-2232-y.

    Article  PubMed  Google Scholar 

  • Shinomoto, S., Kim, H., Shimokawa, T., Matsuno, N., Funahashi, S., Shima, K., et al. (2009). Relating neuronal firing patterns to functional differentiation of cerebral cortex. PLoS Computational Biology, 5(7), e1000433. doi:10.1371/journal.pcbi.1000433.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shmueli, G., Minka, T., Kadane, J., Borle, S., & Boatwright, P. (2004). A useful distribution for fitting discrete data:revival of the conway-Maxwell_Poisson distribution. Applied Statistic, 54(1), 127–142.

    Google Scholar 

  • Softky, W. R., & Koch, C. (1993). The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 13(1), 334–350.

    CAS  Google Scholar 

  • Stan: A C++ Library for probability and sampling, version 2.8.0. (2015). Retrieved from http://mc-stan.org/

  • Stein, R. B., Gossen, E. R., & Jones, K. E. (2005). Neuronal variability: noise or part of the signal? Nature Reviews. Neuroscience, 6(5), 389–397. doi:10.1038/nrn1668.

    Article  CAS  PubMed  Google Scholar 

  • Stevenson, I. H., Rebesco, J. M., Miller, L. E., & Körding, K. P. (2008). Inferring functional connections between neurons. Current Opinion in Neurobiology, 18(6), 582–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevenson, I. H., Cherian, A., London, B. M., Sachs, N. A., Lindberg, E., Reimer, J., et al. (2011). Statistical assessment of the stability of neural movement representations. Journal of Neurophysiology, 106(2), 764–774. doi:10.1152/jn.00626.2010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Taouali, W., Benvenuti, G., Wallisch, P., Chavane, F., & Perrinet, L. U. (2016). Testing the odds of inherent vs. observed overdispersion in neural spike counts. Journal of Neurophysiology, 115(1), 434–44. doi:10.1152/jn.00194.2015.

    Article  PubMed  Google Scholar 

  • Teich, M. C. (1989). Fractal character of the auditory neural spike train. IEEE Transactions on Bio-Medical Engineering, 36(1), 150–60. doi:10.1109/10.16460.

    Article  CAS  PubMed  Google Scholar 

  • Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., & Brown, E. N. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. Journal of Neurophysiology, 93(2), 1074–1089.

    Article  PubMed  Google Scholar 

  • Uzzell, V. J., & Chichilnisky, E. J. (2004). Precision of spike trains in primate retinal ganglion cells. Journal of Neurophysiology, 92(2), 780–789. doi:10.1152/jn.01171.2003.

    Article  CAS  PubMed  Google Scholar 

  • van Steveninck, R. R. R., Lewen, G. D., Strong, S. P., Koberle, R., & Bialek, W. (1997). Reproducibility and variability in neural spike trains. Science, 275(5307), 1805–1808.

    Article  Google Scholar 

  • Vogel, A., Hennig, R. M., & Ronacher, B. (2005). Increase of neuronal response variability at higher processing levels as revealed by simultaneous recordings. Journal of Neurophysiology, 93(6), 3548–59. doi:10.1152/jn.01288.2004.

    Article  CAS  PubMed  Google Scholar 

  • Werner, G., & Mountcastle, V. B. (1963). The variability of central neural activity in a sensory system, and its implications for the central reflection of sensory events. Journal of Neurophysiology, 26(6), 958–977.

    CAS  PubMed  Google Scholar 

  • Wiener, M. C., & Richmond, B. J. (2003). Decoding spike trains instant by instant using order statistics and the mixture-of-poissons model. Journal of Neuroscience, 23(6), 2394–2406. http://www.jneurosci.org/content/23/6/2394.full. Accessed 14 December 2015.

    CAS  PubMed  Google Scholar 

  • Zador, A. (1998). Impact of synaptic unreliability on the information transmitted by spiking neurons. Journal of Neurophysiology, 79(3), 1219–1229.

    CAS  PubMed  Google Scholar 

  • Zhao, M., & Iyengar, S. (2010). Nonconvergence in logistic and poisson models for neural spiking. Neural Computation, 22(5), 1231–1244.

    Article  PubMed  Google Scholar 

  • Zhu, L., Morris, D. S., Sellers, K. F., & Shmueli, G. (2015). Bridging the gap: a generalized stochastic process for count data. Under Review.

Download references

Acknowledgments

Thanks to Mike DeWeese, Heather Read, and Monty Escabi for helpful comments and discussions. IHS was supported by an NSF Computing Innovation Fellowship (NSF-0937060 CIF-D-018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian H. Stevenson.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Action Editor: Liam Paninski

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stevenson, I.H. Flexible models for spike count data with both over- and under- dispersion. J Comput Neurosci 41, 29–43 (2016). https://doi.org/10.1007/s10827-016-0603-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-016-0603-y

Keywords

Navigation