Skip to main content
Log in

Optical designing and simulation of a concentrating solar spectrum splitting prototype

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, we presented a simulation method to assess and evaluate the performance of a simple optical design composed of a split spectrum combined with a solar concentrator, both spectrum splitter and solar concentrator, which are commonly numerically designed and optimized on Trace Pro. A comprehensive explanation based on numerical simulation using ray tracing with realistic irradiation conditions is presented to demonstrate the possibility of employing a spectrum-splitting system to improve solar energy conversion and to explain the essential importance of optical concentration in such a system. The analysis demonstrates an increase in electricity efficiency, and the [Yellow Green] spectral range shows the most effective absorption for silicon solar cells compared to [Red Orange] and [Blue Purple] spectral ranges. The solar cells get an additional performance boost from the concentration incorporated. The following approach is expected to result in a more usable design, it allows for more efficient use of solar energy and potentially achieves much higher conversion efficiencies, a way of reducing production costs and increasing the output of the photovoltaic cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

No data were used for the research described in the article.

References

  1. James, L.W., Moon, R.L.: GaAs concentrator solar cell. Appl. Phys. Lett. 26, 467–470 (1975). https://doi.org/10.1063/1.88213

    Article  Google Scholar 

  2. Li, Z., Palacios, E., Butun, S., Aydin, K.: Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting. Nano Lett. 15, 1615–1621 (2015). https://doi.org/10.1021/nl5041572

    Article  Google Scholar 

  3. Dirnberger, D., Blackburn, G., Müller, B., Reise, C.: On the impact of solar spectral irradiance on the yield of different PV technologies. Sol. Energy Mater. Sol. Cells 132, 431–442 (2015). https://doi.org/10.1016/j.solmat.2014.09.034

    Article  Google Scholar 

  4. Santbergen, R., van Zolingen, R.J.C.: The absorption factor of crystalline silicon PV cells: a numerical and experimental study. Sol. Energy Mater. Sol. Cells 92, 432–444 (2008). https://doi.org/10.1016/j.solmat.2007.10.005

    Article  Google Scholar 

  5. Barnett, A., Kirkpatrick, D., Honsberg, C., Moore, D., Wanlass, M., Emery, K., Schwartz, R., Carlson, D., Bowden, S., Aiken, D., Gray, A., Kurtz, S., Kazmerski, L., Steiner, M., Gray, J., Davenport, T., Buelow, R., Takacs, L., Shatz, N., Bortz, J., Jani, O., Goossen, K., Kiamilev, F., Doolittle, A., Ferguson, I., Unger, B., Schmidt, G., Christensen, E., Salzman, D.: Very high efficiency solar cell modules. Prog. Photovolt. Res. Appl. 17, 75–83 (2009). https://doi.org/10.1002/pip.852

    Article  Google Scholar 

  6. Imenes, A.G., Mills, D.R.: Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review. Sol. Energy Mater. Sol. Cells 84, 19–69 (2004). https://doi.org/10.1016/J.SOLMAT.2004.01.038

    Article  Google Scholar 

  7. Shanks, K., Senthilarasu, S., Mallick, T.K.: Optics for concentrating photovoltaics: trends, limits and opportunities for materials and design. Renew. Sustain. Energy Rev. 60, 394–407 (2016). https://doi.org/10.1016/j.rser.2016.01.089

    Article  Google Scholar 

  8. Mojiri, A., Taylor, R., Thomsen, E., Rosengarten, G.: Spectral beam splitting for efficient conversion of solar energy: a review. Renew. Sustain. Energy Rev. 28, 654–663 (2013). https://doi.org/10.1016/j.rser.2013.08.026

    Article  Google Scholar 

  9. Barkhouse, D.A.R., Gunawan, O., Gokmen, T., Todorov, T.K., Mitzi, D.B.: Yield predictions for photovoltaic power plants: empirical validation, recent advances and remaining uncertainties. Prog. Photovolt. Res. Appl. 20, 6–11 (2015). https://doi.org/10.1002/pip

    Article  Google Scholar 

  10. Goldschmidt, J.C., Do, C., Peters, M., Goetzberger, A.: Spectral splitting module geometry that utilizes light trapping. Sol. Energy Mater. Sol. Cells 108, 57–64 (2013). https://doi.org/10.1016/j.solmat.2012.09.001

    Article  Google Scholar 

  11. Xiong, K., Lu, S., Dong, J., Zhou, T., Jiang, D., Wang, R., Yang, H.: Light-splitting photovoltaic system utilizing two dual-junction solar cells. Sol. Energy 84, 1975–1978 (2010). https://doi.org/10.1016/j.solener.2010.10.011

    Article  Google Scholar 

  12. Zhao, Y., Sheng, M.-Y., Zhou, W.-X., Shen, Y., Hu, E.-T., Chen, J.-B., Xu, M., Zheng, Y.-X., Lee, Y.-P., Lynch, D.W., Chen, L.-Y.: A solar photovoltaic system with ideal efficiency close to the theoretical limit. Opt. Express 20, A28 (2012). https://doi.org/10.1364/oe.20.000a28

    Article  Google Scholar 

  13. Imenes, A.G., Buie, D., McKenzie, D.: The design of broadband, wide-angle interference filters for solar concentrating systems. Sol. Energy Mater. Sol. Cells 90, 1579–1606 (2006). https://doi.org/10.1016/J.SOLMAT.2005.08.007

    Article  Google Scholar 

  14. Peters, M., Goldschmidt, J.C., Löper, P., Groß, B., Üpping, J., Dimroth, F., Wehrspohn, R.B., Blasi, B.: Spectrally-selective photonic structures for PV applications. Energies 3, 171–193 (2010). https://doi.org/10.3390/en3020171

    Article  Google Scholar 

  15. Kostuk, R.K., Rosenberg, G.: Analysis and design of holographic solar concentrators. In: High and Low Concentration for Solar Electric Applications III, vol. 7043, 70430I (2008). https://doi.org/10.1117/12.793895

  16. Moore, D., Schmidt, G., Unger, B.: Concentrated photovoltaic stepped planar light guide. In: International Optical Design Conference and Optical Fabrication and Testing. p. JMB46P. Optica Publishing Group (2010)

  17. Jerker Y. Taudien, L.A.K.I.: Concentrating and spectrum splitting optical device in high efficiency CPV module with five bandgaps. In: High and Low Concentration for Solar Electric Applications VIII, vol. 8821, 88210A (2013). https://doi.org/10.1117/12.2024710

  18. Ma, H., Meng, Q., Xu, S., Dong, J., Li, W.: High-integrated spectral splitting solar concentrator with double-light guide layers. Opt. Eng. 53, 105102 (2014). https://doi.org/10.1117/1.oe.53.10.105102

    Article  Google Scholar 

  19. Orosz, M., Zweibaum, N., Lance, T., Ruiz, M., Morad, R.: Spectrum-splitting hybrid CSP-CPV solar energy system with standalone and parabolic trough plant retrofit applications. AIP Conf. Proc. (2016). https://doi.org/10.1063/1.4949170

    Article  Google Scholar 

  20. Qu, W., Hong, H., Jin, H.: A spectral splitting solar concentrator for cascading solar energy utilization by integrating photovoltaics and solar thermal fuel. Appl. Energy. 248, 162–173 (2019). https://doi.org/10.1016/j.apenergy.2019.04.115

    Article  Google Scholar 

  21. C. Schinke, M. R. Vogt, and K. Bothe, Optical modeling of photovoltaic modules with ray tracing simulations. In: Photovoltaic Modeling Handbook, pp. 27–92 (2018). https://doi.org/10.1002/9781119364214.ch3

  22. Xu, Q., Ji, Y., Riggs, B., Ollanik, A., Farrar-Foley, N., Ermer, J.H., Romanin, V., Lynn, P., Codd, D., Escarra, M.D.: A transmissive, spectrum-splitting concentrating photovoltaic module for hybrid photovoltaic-solar thermal energy conversion. Sol. Energy 137, 585–593 (2016). https://doi.org/10.1016/j.solener.2016.08.057

    Article  Google Scholar 

  23. Han, X., Tu, L., Sun, Y.: A spectrally splitting concentrating PV/T system using combined absorption optical filter and linear Fresnel reflector concentrator. Sol. Energy 223, 168–181 (2021). https://doi.org/10.1016/j.solener.2021.05.039

    Article  Google Scholar 

  24. Drăgan, F., Nordseth, Ø., Fara, L., Dumitru, C., Crăciunescu, D., Muscurel, V., Sterian, P.: Optical modeling and simulation of tandem metal oxide solar cells. Ann. West Univ. Timisoara Phys. 60, 56–66 (2018). https://doi.org/10.2478/awutp-2018-0006

    Article  Google Scholar 

  25. John, N.M., Jose, A.: Optical designing of spatial heterodyne spectrometer using TracePro. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 5, 2911–2916 (2016). https://doi.org/10.15662/IJAREEIE.2016.0504141

    Article  Google Scholar 

  26. Thirugnanasambandam, M., Iniyan, S., Goic, R.: A review of solar thermal technologies. Renew. Sustain. Energy Rev. 14, 312–322 (2010). https://doi.org/10.1016/j.rser.2009.07.014

    Article  Google Scholar 

  27. Crisostomo, F., Taylor, R.A., Zhang, T., Perez-Wurfl, I., Rosengarten, G., Everett, V., Hawkes, E.R.: Experimental testing of SiNx/SiO2 thin film filters for a concentrating solar hybrid PV/T collector. Renew. Energy 72, 79–87 (2014). https://doi.org/10.1016/j.renene.2014.06.033

    Article  Google Scholar 

  28. Hamdan, M., Brawiesh, A.K.: Enhancement of PV performance using optical solar spectrum splitting. Energy Sources Part A Recover. Util. Environ. Eff. 43, 2000–2007 (2021). https://doi.org/10.1080/15567036.2019.1668087

    Article  Google Scholar 

  29. Radziemska, E.: The effect of temperature on the power drop in crystalline silicon solar cells. Renew. Energy 28, 1–12 (2003). https://doi.org/10.1016/S0960-1481(02)00015-0

    Article  Google Scholar 

  30. Rdhaounia, E., Ben Amara, M., Balghouthi, M.: Dispersive spectrum splitting for solar Photovoltaic’s performance; seasonal variation effect and efficiency enhancement. Opt. Laser Technol. 165, 109557 (2023). https://doi.org/10.1016/j.optlastec.2023.109557

    Article  Google Scholar 

  31. Zhao, Y., Sheng, M.-Y., Zhou, W.-X., Shen, Y., Hu, E.T., Chen, J.B., Xu, M., Zheng, Y.-X., Lee, Y.-P., Lynch, D.W., Chen, L.-Y.: Study of spectrum-splitting solar photovoltaic system. In: Ambs, P., Curticapean, D., Emmelmann, C., Knapp, W., Kuznicki, Z.T., Meyrueis, P.P. (eds.) SPIE Eco-Photonics 2011: Sustainable Design, Manufacturing, and Engineering Workforce Education for a Green Future, p. 806. SPIE, Bellingham (2011)

    Google Scholar 

  32. Ramkiran, B., Sundarabalan, C.K., Sudhakar, K.: Performance evaluation of solar PV module with filters in an outdoor environment. Case Stud. Therm. Eng. 21, 100700 (2020). https://doi.org/10.1016/j.csite.2020.100700

    Article  Google Scholar 

Download references

Acknowledgements

The authors especially thank the Physics Department of the Faculty of Science of Gabes and the Research and Technology Center of Energy of Bordj-Cedria, Tunisia Ministry of Higher Education and Scientific Research for creating favors in stakeholder communication, information collection, and funding provision during the implementation of the study.

Funding

No funding was received for the study.

Author information

Authors and Affiliations

Authors

Contributions

All authors of this research paper have directly participated in the planning, execution, or analysis of this study. All authors of this paper have read and approved the final version submitted.

Corresponding author

Correspondence to Mahmoud Ben Amara.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The contents of this manuscript have not been copyrighted or published previously; the contents of this manuscript are not now under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rdhaounia, E., Ben Amara, M. & Balghouthi, M. Optical designing and simulation of a concentrating solar spectrum splitting prototype. J Comput Electron 22, 1522–1531 (2023). https://doi.org/10.1007/s10825-023-02081-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-023-02081-1

Keywords

Navigation