Skip to main content
Log in

Application of shape-based and pharmacophore-based in silico screens for identification of Type II protein kinase inhibitors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The identification of new, potent and selective inhibitors of important protein kinase targets is a major goal of drug discovery. Here we analyze the crystal structures of 55 protein kinase complexes with Type II inhibitors and find they adopt a conserved twisted V-shape, with an angle of 121 ± 8° and twist of 78 ± 8°. The tightly conserved twist appears important in ensuring ligands curve around the protein backbone and towards the deep pocket. From this, we develop predictive pharmacophore- and shape-based screens to identify Type II inhibitors from a database which also contains Type I inhibitors as decoys. Both approaches exhibit a good level of discrimination for Type II molecules. The most effective pharmacophore model requires six features and three excluded volume regions. Shape-based screening using ROCS generally performs at least as well as pharmacophore approaches. There is only a moderate dependence of shape-based or pharmacophore-based screens on the underlying conformer generator (MOE, Macromodel, Omega and SPE), as well as on ligand linkage chemistry (amide and urea). Finally, we apply our approach to retrieval of Type II inhibitors from a modified version of the DUD database, containing over 104,000 compounds. We observe good enrichment, providing further evidence that the in silico screens developed here will constitute useful guides for identification of small molecule inhibitors targetting protein kinases in their inactive conformational state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang JM, Yang PL, Gray NS (2009) Nat Rev Cancer 9:28

    Article  Google Scholar 

  2. Noble MEM, Endicott JA, Johnson LN (2004) Science 303:1800

    Article  CAS  Google Scholar 

  3. Hanks SK, Quinn AM, Hunter T (1988) Science 241:42

    Article  CAS  Google Scholar 

  4. Scapin G (2002) Drug Discov Today 7:601

    Article  CAS  Google Scholar 

  5. Backes AC, Zech B, Felber B, Klebl B, Muller G (2008) Expert Opin Drug Discov 3:1427

    Article  CAS  Google Scholar 

  6. Kufareva I, Abagyan R (2008) J Med Chem 51:7921

    Article  CAS  Google Scholar 

  7. Backes AC, Zech B, Felber B, Klebl B, Muller G (2008) Expert Opin Drug Discov 3:1409

    Article  CAS  Google Scholar 

  8. Liu Y, Gray NS (2006) Nat Chem Biol 2:358

    Article  CAS  Google Scholar 

  9. Seeliger MA, Ranjitkar P, Kasap C, Shan YB, Shaw DE, Shah NP, Kuriyan J, Maly DJ (2009) Cancer Res 69:2384

    Article  CAS  Google Scholar 

  10. Neumann L, Ritscher A, Muller G, Hafenbradl D (2009) J Comp Aided Mol Des 23:501

    Article  CAS  Google Scholar 

  11. Pargellis C, Tong L, Churchill L, Cirillo PF, Gilmore T, Graham AG, Grob PM, Hickey ER, Moss N, Pav S, Regan J (2002) Nat Struct Biol 9:268

    Article  CAS  Google Scholar 

  12. Zuccotto F, Ardini E, Casale E, Angiolini M (2010) J Med Chem 53:2681

    Article  CAS  Google Scholar 

  13. McGregor MJ (2007) J Chem Inf Modell 47:2374

    Article  CAS  Google Scholar 

  14. Xie QQ, Xie HZ, Ren JX, Li LL, Yang SY (2009) J Mol Graph Modell 27:751

    Article  CAS  Google Scholar 

  15. Okram B, Nagle A, Adrian FJ, Lee C, Ren P, Wang X, Sim T, Xie YP, Wang X, Xia G, Spraggon G, Warmuth M, Liu Y, Gray NS (2006) Chem Biol 13:779

    Article  CAS  Google Scholar 

  16. Nagar B, Bornmann WG, Pellicena P, Schindler T, Veach DR, Miller WT, Clarkson B, Kuriyan J (2002) Cancer Res 62:4236

    CAS  Google Scholar 

  17. Wan PTC, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R (2004) Cell 116:855

    Article  CAS  Google Scholar 

  18. Weisberg E, Manley PW, Breitenstein W, Bruggen J, Cowan-Jacob SW, Ray A, Huntly B, Fabbro D, Fendrich G, Hall-Meyers E, Kung AL, Mestan J, Daley GQ, Callahan L, Catley L, Cavazza C, Mohammed A, Neuberg D, Wright RD, Gilliland DG, Griffin JD (2005) Cancer Cell 7:129

    Article  CAS  Google Scholar 

  19. Deak HL, Newcomb JR, Nunes JJ, Boucher C, Cheng AC, DiMauro EF, Epstein LF, Gallant P, Hodous BL, Huang X, Lee JH, Patel VF, Schneider S, Turci SM, Zhu XT (2008) Bioorg Med Chem Lett 18:1172

    Article  CAS  Google Scholar 

  20. Araujo J, Mathew R, Armstrong AJ, Braud EL, Posadas E, Lonberg M, Gallick G, Trudel GC, Paliwal P, Logothetis CJ (2009) EJC Suppl 7:415

    Google Scholar 

  21. Oslob JD, Romanowski MJ, Allen DA, Baskaran S, Bui M, Elling RA, Flanagan WM, Fung AD, Hanan EJ, Harris S, Heumann SA, Hoch U, Jacobs JW, Lam J, Lawrence CE, McDowell RS, Nannini MA, Shen W, Silverman JA, Sopko MM, Tangonan BT, Teague J, Yoburn JC, Yu CH, Zhong M, Zimmerman KM, O’Brien T, Lew W (2008) Bioorg Med Chem Lett 18:4880

    Article  CAS  Google Scholar 

  22. Rush TS, Grant JA, Mosyak L, Nicholls A (2005) J Med Chem 48:1489

    Article  CAS  Google Scholar 

  23. Chemical Computing Group, Montreal, QC, Canada, 2003

  24. Schrodinger; Schrodinger LLC (2005). http://www.schrodinger.com.

  25. Omega; OpenEye Scientific Software (1997). http://www.eyesopen.com/.

  26. SPE, Johnson and Johnson (2009)

  27. Agrafiotis DK, Gibbs A, Zhu FQ, Izrailev S, Martin E (2006) Aust J Chem 59:874

    Article  CAS  Google Scholar 

  28. Halgren TA (1999) J Comput Chem 20:720

    Article  CAS  Google Scholar 

  29. Halgren TA (1996) J Comput Chem 17:490

    Article  CAS  Google Scholar 

  30. Halgren TA (1996) J Comput Chem 17:520

    Article  CAS  Google Scholar 

  31. Halgren TA (1996) J Comput Chem 17:553

    Article  CAS  Google Scholar 

  32. Halgren TA, Nachbar RB (1996) J Comput Chem 17:587

    CAS  Google Scholar 

  33. Halgren TA (1996) J Comput Chem 17:616

    Article  CAS  Google Scholar 

  34. Tresadern G, Agrafiotis DK (2009) J Chem Inf Modell 49:2786

    Article  CAS  Google Scholar 

  35. Kirchmair J, Distinto S, Markt P, Schuster D, Spitzer GM, Liedl KR, Wolber G (2009) J Chem Inf Modell 49:678

    Article  CAS  Google Scholar 

  36. Needleman SB, Wunsch CD (1970) J Mol Biol 48:443

    Article  CAS  Google Scholar 

  37. Pipeline Pilot, Accelrys, Inc., San Diego, USA, 2010

  38. Kirchmair J, Ristic S, Eder K, Markt P, Wolber G, Laggner C, Langer T (2007) J Chem Inf Modell 47:2182

    Article  CAS  Google Scholar 

  39. Gribskov M, Robinson NL (1996) Comput Chem 20:25

    Article  CAS  Google Scholar 

  40. O’Hare T, Shakespeare WC, Zhu XT, Eide CA, Rivera VM, Wang F, Adrian LT, Zhou TJ, Huang WS, Xu QH, Metcalf CA, Tyner JW, Loriaux MM, Corbin AS, Wardwell S, Ning YY, Keats JA, Wang YH, Sundaramoorthi R, Thomas M, Zhou D, Snodgrass J, Commodore L, Sawyer TK, Dalgarno DC, Deininger MWN, Druker BJ, Clackson T (2009) Cancer Cell 16:401

    Article  Google Scholar 

  41. Potashman MH, Bready J, Coxon A, DeMelfi TM, DiPietro L, Doerr N, Elbaum D, Estrada J, Gallan P, Germain J, Gu Y, Harmange JC, Kaufman SA, Kendall R, Kim JL, Kumar GN, Long AM, Neervannan S, Patel VF, Polverino A, Rose P, van der Plas S, Whittington D, Zanon R, Zhao HL (2007) J Med Chem 50:4351

    Article  CAS  Google Scholar 

  42. Bonnet P, Agrafiotis DK, Zhu FQ, Martin E (2009) J Chem Inf Modell 49:2242

    Article  CAS  Google Scholar 

  43. Hodous BL, Geuns-Meyer SD, Hughes PE, Albrecht BK, Bellon S, Bready J, Caenepeel S, Cee VJ, Chaffee SC, Coxon A, Emery M, Fretland J, Gallant P, Gu Y, Hoffman D, Johnson RE, Kendall R, Kim JL, Long AM, Morrison M, Olivieri PR, Patel VF, Polverino A, Rose P, Tempest P, Wang L, Whittington DA, Zhao HL (2007) J Med Chem 50:611

    Article  CAS  Google Scholar 

  44. Gill AL, Frederickson M, Cleasby A, Woodhead SJ, Carr MG, Woodhead AJ, Walker MT, Congreve MS, Devine LA, Tisi D, O’Reilly M, Seavers LCA, Davis DJ, Curry J, Anthony R, Padova A, Murray CW, Carr RAE, Jhoti H (2005) J Med Chem 48:414

    Article  CAS  Google Scholar 

  45. Miyazaki Y, Matsunaga S, Tang J, Maeda Y, Nakano M, Philippe RJ, Shibahara M, Liu W, Sato H, Wang LP, Nolte RT (2005) Bioorg Med Chem Lett 15:2203

    Article  CAS  Google Scholar 

  46. Grant JA, Gallardo MA, Pickup BT (1996) J Comput Chem 17:1653

    Article  CAS  Google Scholar 

  47. Agrafiotis DK, Gibbs AC, Zhu FQ, Izrailev S, Martin E (2007) J Chem Inf Modell 47:1067

    Article  CAS  Google Scholar 

  48. Getlik M, Gruêtter C, Simard JR, Kluêter S, Rabiller M, Rode HB, Robubi A, Rauh D (2009) J Med Chem 52:3915

    Article  CAS  Google Scholar 

  49. Simard JR, Getlik Mê, Gruêtter C, Pawar V, Wulfert S, Rabiller M, Rauh D (2009) J Am Chem Soc 131:13286

    Article  CAS  Google Scholar 

  50. Berger DM, Torres N, Dutia M, Powell D, Ciszewski G, Gopalsamy A, Levin JI, Kim KH, Xu W, Wilhelm J, Hu Y, Collins K, Feldberg L, Kim S, Frommer E, Wojciechowicz D, Mallon R (2009) Bioorg Med Chem Lett 19:6519

    Article  CAS  Google Scholar 

  51. Han S, Mistry A, Chang JS, Cunningham D, Griffor M, Bonnette PC, Wang H, Chrunyk BA, Aspnes GE, Walker DP, Brosius AD, Buckbinder L (2009) J Bio Chem 21:13193

    Google Scholar 

  52. Huang N, Shoichet BK, Irwin JJ (2006) J Med Chem 49:6789

    Article  CAS  Google Scholar 

  53. Jahn A, Hinselmann G, Fechner N, Zell A (2009) J Cheminform 1:14

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Biotechnology and Biological Sciences Research Council and Johnson & Johnson Pharmaceutical Research & Development. The authors would like to thank Dr. Trevor Howe and Dr. Berthold Wroblowski for their valuable comments; and Andrew Henry from Chemical Computing Group for his support in MOE scripting.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Richard A. Bryce or Pascal Bonnet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 646 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mucs, D., Bryce, R.A. & Bonnet, P. Application of shape-based and pharmacophore-based in silico screens for identification of Type II protein kinase inhibitors. J Comput Aided Mol Des 25, 569–581 (2011). https://doi.org/10.1007/s10822-011-9442-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-011-9442-0

Keywords

Navigation