Skip to main content
Log in

Differential expression of follicular fluid exosomal microRNA in women with diminished ovarian reserve

  • Reproductive physiology and disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Decreased ovarian reserve function is mainly characterized by female endocrine disorders and fertility decline. Follicular fluid (FF) exosomal microRNAs (miRNAs) have been shown to regulate the function of granulosa cells (GCs). The present study explored differentially expressed miRNAs (DEmiRNAs) in patients with diminished ovarian reserve (DOR).

Methods

FF was collected from 12 DOR patients and 12 healthy controls. DEmiRNAs between the two groups were identified and analyzed using high-throughput sequencing technology and validated by real-time quantitative PCR (RT-qPCR).

Results

A total of 592 DEmiRNAs were identified using high-throughput miRNA sequencing, of which 213 were significantly upregulated and 379 were significantly downregulated. The sequencing results were further validated by RT-qPCR. These DEmiRNA target genes were mainly involved in the cancer pathway, phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, regulation of actin cytoskeleton signaling pathway, and biological processes related to protein binding, nucleoplasm, cytoplasm, and cell membrane.

Conclusion

FF exosomal miRNAs are significantly differentially expressed in DOR patients versus non-DOR patients, underscoring their crucial role in regulating the pathogenesis of DOR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data will be made available to the editors of the journal for review or query upon request.

References

  1. World Health Organization. WHO Team Sexual and Reproductive Health and Research Infertility Prevalence Estimates 1990-2021. World Health Organization. 2024. https://www.who.int/health-topics/infertility. Accessed 9 Nov 2023.

  2. Ata B, Seyhan A, Seli E. Diminished ovarian reserve versus ovarian aging: overlaps and differences. Curr Opin Obstet Gynecol. 2019;31(3):139–47. https://doi.org/10.1097/GCO.0000000000000536.

    Article  PubMed  Google Scholar 

  3. Pastore LM, Christianson MS, Stelling J, Kearns WG, Segars JH. Reproductive ovarian testing and the alphabet soup of diagnoses: DOR, POI, POF, POR, and FOR. J Assist Reprod Genet. 2018;35(1):17–23. https://doi.org/10.1007/s10815-017-1058-4.

    Article  PubMed  Google Scholar 

  4. Tang MK, Wong AS. Exosomes: emerging biomarkers and targets for ovarian cancer. Cancer Lett. 2015;367(1):26–33. https://doi.org/10.1016/j.canlet.2015.07.014.

    Article  CAS  PubMed  Google Scholar 

  5. Boon RA, Vickers KC. Intercellular transport of microRNAs. Arterioscler Thromb Vasc Biol. 2013;33(2):186–92. https://doi.org/10.1161/ATVBAHA.112.300139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74. https://doi.org/10.1038/nrg3074.

    Article  CAS  PubMed  Google Scholar 

  7. Sang Q, Yao Z, Wang H, Feng R, Wang H, Zhao X, et al. Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab. 2013;98(7):3068–79. https://doi.org/10.1210/jc.2013-1715.

    Article  CAS  PubMed  Google Scholar 

  8. Yang X, Zhou Y, Peng S, Wu L, Lin HY, Wang S, et al. Differentially expressed plasma microRNAs in premature ovarian failure patients and the potential regulatory function of mir-23a in granulosa cell apoptosis. Reproduction. 2012;144(2):235–44. https://doi.org/10.1530/REP-11-0371.

    Article  CAS  PubMed  Google Scholar 

  9. Santonocito M, Vento M, Guglielmino MR, Battaglia R, Wahlgren J, Ragusa M, et al. Molecular characterization of exosomes and their microRNA cargo in human follicular fluid: bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation. Fertil Steril. 2014;102(6):1751-61.e1. https://doi.org/10.1016/j.fertnstert.2014.08.005.

    Article  CAS  PubMed  Google Scholar 

  10. Revelli A, Delle Piane L, Casano S, Molinari E, Massobrio M, Rinaudo P. Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod Biol Endocrinol. 2009May;4(7):40. https://doi.org/10.1186/1477-7827-7-40.

    Article  CAS  Google Scholar 

  11. Rodgers RJ, Irving-Rodgers HF. Formation of the ovarian follicular antrum and follicular fluid. Biol Reprod. 2010Jun;82(6):1021–9. https://doi.org/10.1095/biolreprod.109.082941.

    Article  CAS  PubMed  Google Scholar 

  12. Zamah AM, Hassis ME, Albertolle ME, Williams KE. Proteomic analysis of human follicular fluid from fertile women. Clin Proteomics. 2015Mar 3;12(1):5. https://doi.org/10.1186/s12014-015-9077-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nejabati HR, Roshangar L, Nouri M. Follicular fluid extracellular vesicle miRNAs and ovarian aging. Clin Chim Acta. 2023Jan;1(538):29–35. https://doi.org/10.1016/j.cca.2022.11.003.

    Article  CAS  Google Scholar 

  14. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007Jun;9(6):654–9. https://doi.org/10.1038/ncb1596.

    Article  CAS  PubMed  Google Scholar 

  15. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;285(23):17442–52. https://doi.org/10.1074/jbc.M110.107821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang P, Wang J, Lang H, Wang W, Liu X, Liu H, et al. MicroRNA-205 affects mouse granulosa cell apoptosis and estradiol synthesis by targeting CREB1. J Cell Biochem. 2019;120(5):8466–74. https://doi.org/10.1002/jcb.28133.

    Article  CAS  PubMed  Google Scholar 

  17. Cao R, Wu W, Zhou X, Liu K, Li B, Huang X, et al. Let-7g induces granulosa cell apoptosis by targeting MAP3K1 in the porcine ovary. Int J Biochem Cell Biol. 2015;68:148–57. https://doi.org/10.1016/j.biocel.2015.08.011.

    Article  CAS  PubMed  Google Scholar 

  18. Xiao Y, Peng X, Peng Y, Zhang C, Liu W, Yang W, et al. Macrophage-derived extracellular vesicles regulate follicular activation and improve ovarian function in old mice by modulating local environment. Clin Transl Med. 2022Oct;12(10):e1071.https://doi.org/10.1002/ctm2.1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Donadeu FX, Schauer SN, Sontakke SD. Involvement of miRNAs in ovarian follicular and luteal development. J Endocrinol. 2012Dec;215(3):323–34. https://doi.org/10.1530/JOE-12-0252.

    Article  CAS  PubMed  Google Scholar 

  20. Fiedler SD, Carletti MZ, Hong X, Christenson LK. Hormonal regulation of MicroRNA expression in periovulatory mouse mural granulosa cells. Biol Reprod. 2008;79(6):1030–7. https://doi.org/10.1095/biolreprod.108.069690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen B, Xu P, Wang J, Zhang C. The role of MiRNA in polycystic ovary syndrome (PCOS). Gene. 2019;706:91–6. https://doi.org/10.1016/j.gene.2019.04.082.

    Article  CAS  PubMed  Google Scholar 

  22. Woo I, Christenson LK, Gunewardena S, Ingles SA, Thomas S, Ahmady A, et al. Micro-RNAs involved in cellular proliferation have altered expression profiles in granulosa of young women with diminished ovarian reserve. J Assist Reprod Genet. 2018Oct;35(10):1777–86. https://doi.org/10.1007/s10815-018-1239-9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Deswal R, Dang AS. Dissecting the role of micro-RNAs as a diagnostic marker for polycystic ovary syndrome: a systematic review and meta-analysis. Fertil Steril. 2020Mar;113(3):661-669.e2. https://doi.org/10.1016/j.fertnstert.2019.11.001.

    Article  CAS  PubMed  Google Scholar 

  24. Schneider C, Setty M, Holmes AB, Maute RL. L and is down-regulated in B-cell lymphomas. Proc Natl Acad Sci U S A. 2014Jun 3;111(22):8185–90. https://doi.org/10.1073/pneslieCS,MussolinL,RosolenA,Dalla-FaveraR,BassoK.MicroRNA28controlscellproliferationas.1322466111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bartolucci AF, Uliasz T, Peluso JJ. MicroRNA-21 as a regulator of human cumulus cell viability and its potential influence on the developmental potential of the oocyte. Biol Reprod. 2020Jun 23;103(1):94–103. https://doi.org/10.1093/biolre/ioaa058.

    Article  PubMed  Google Scholar 

  26. Maidarti M, Anderson RA, Telfer EE. Crosstalk between PTEN/PI3K/Akt signalling and DNA damage in the oocyte: implications for primordial follicle activation, Oocyte Quality and Ageing. Cells. 2020Jan 14;9(1):200. https://doi.org/10.3390/cells9010200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li L, Shi X, Shi Y, Wang Z. The signaling pathways involved in ovarian follicle development. Front Physiol. 2021Sep;20(12):730196. https://doi.org/10.3389/fphys.2021.730196.

    Article  Google Scholar 

  28. Reddy P, Shen L, Ren C, Boman K, Lundin E, Ottander U, et al. Activation of Akt (PKB) and suppression of FKHRL1 in mouse and rat oocytes by stem cell factor during follicular activation and development. Dev Biol. 2005May 15;281(2):160–70. https://doi.org/10.1016/j.ydbio.2005.02.013.

    Article  CAS  PubMed  Google Scholar 

  29. Adhikari D, Liu K. Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocr Rev. 2009Aug;30(5):438–64. https://doi.org/10.1210/er.2008-0048.

    Article  CAS  PubMed  Google Scholar 

  30. Coticchio G, Dal Canto M, Mignini Renzini M, Guglielmo MC, Brambillasca F, Turchi D, et al. Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Hum Reprod Update. 2015;21(4):427–54. https://doi.org/10.1093/humupd/dmv011.

    Article  CAS  PubMed  Google Scholar 

  31. Chen L, Ni Z, Cai Z, Cheng W, Sun S, Yu C, et al. The mechanism exploration of follicular fluids on granulose cell apoptosis in endometriosis-associated infertility. Biomed Res Int. 2021;2021:6464686. https://doi.org/10.1155/2021/6464686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Deb B, Uddin A, Chakraborty S. miRNAs and ovarian cancer: an overview. J Cell Physiol. 2018;233(5):3846–54. https://doi.org/10.1002/jcp.26095.

    Article  CAS  PubMed  Google Scholar 

  33. Frisk NLS, Sørensen AE, Pedersen OBV, Dalgaard LT. Circulating microRNAs for Early Diagnosis of Ovarian Cancer: A Systematic Review and Meta-Analysis. Biomolecules. 2023;13(5):871. https://doi.org/10.3390/biom13050871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wei L, He Y, Bi S, Li X, Zhang J, Zhang S. miRNA-199b-3p suppresses growth and progression of ovarian cancer via the CHK1/E-cadherin/EMT signaling pathway by targeting ZEB1. Oncol Rep. 2021;45(2):569–81. https://doi.org/10.3892/or.2020.7895.

    Article  CAS  PubMed  Google Scholar 

  35. Srivastava A, Moxley K, Ruskin R, Dhanasekaran DN, Zhao YD, Ramesh R. A Non-invasive liquid biopsy screening of urine-derived exosomes for miRNAs as biomarkers in endometrial cancer patients. AAPS J. 2018;20(5):82. https://doi.org/10.1208/s12248-018-0220-y.

    Article  CAS  PubMed  Google Scholar 

  36. Vasilatou D, Sioulas VD, Pappa V, Papageorgiou SG, Vlahos NF. The role of miRNAs in endometrial cancer. Epigenomics. 2015;7(6):951–9. https://doi.org/10.2217/epi.15.41.

    Article  CAS  PubMed  Google Scholar 

  37. Hill M, Tran N. miRNA interplay: mechanisms and consequences in cancer. Dis Model Mech. 2021;14(4). https://doi.org/10.1242/dmm.047662

  38. Gebremedhn S, Gad A, Ishak GM, Menjivar NG, Gastal MO, Feugang JM, et al. Dynamics of extracellular vesicle-coupled microRNAs in equine follicular fluid associated with follicle selection and ovulation. Mol Hum Reprod. 2023;29(4). https://doi.org/10.1093/molehr/gaad009.

Download references

Funding

We gratefully acknowledge all of the funding sources and all study participants. This work was supported by grants from the National Natural Science Foundation of China, Grant/Award Number: 82074479; Special Foundation of Clinical Medicine of Jiangsu Provincial Bureau of Science and Technology,Grant/Award Number: ZT202107.

Author information

Authors and Affiliations

Authors

Contributions

Ying Xie and Juan Chen: investigation, writing—original draft; Kailu Liu, Jingyu Huang and Yaqiong Zeng: visualization, data curation; Mengya Gao, Yu Qian, Li Liu: validation analysis, Yong Tan and Xiaowei Nie: project administration, funding acquisition.

Corresponding authors

Correspondence to Yong Tan or Xiaowei Nie.

Ethics declarations

Ethics approval

The Jiangsu Provincial Hospital of Traditional Chinese Medicine’s Ethics Committee examined and authorized this study (Approval No. 2022NL-200–03). This study was carried out in accordance with ethics committee permission and the Declaration of Helsinki.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Chen, J., Liu, K. et al. Differential expression of follicular fluid exosomal microRNA in women with diminished ovarian reserve. J Assist Reprod Genet 41, 1087–1096 (2024). https://doi.org/10.1007/s10815-024-03037-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-024-03037-5

Keywords

Navigation