Skip to main content
Log in

Involvement of single nucleotide polymorphisms in ovarian poor response

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Unpredictability in acquiring an adequate number of high-quality oocytes following ovarian stimulation is one of the major complications in controlled ovarian hyperstimulation (COH). Genetic predispositions of variations could alter the immunological profiles and consequently be implicated in the variability of ovarian response to the stimulation.

Design

Uncovering the influence of variations in AMHR2, LHCGR, MTHFR, PGR, and SERPINE1 genes with ovarian response to gonadotrophin stimulation in COH of infertile women.

Methods

Blood samples of the women with a good ovarian response (GOR) or with a poor ovarian response (POR) were collected. Genomic DNA was extracted, and gene variations were genotyped by TaqMan SNP Genotyping Assays using primer-probe sets or real-time PCR Kit.

Results

Except for PGR (rs10895068), allele distributions demonstrate that the majority of POR patients carried minor alleles of AMHR2 (rs2002555, G-allele), LHCGR (rs2293275, G-allele), MTHFR (rs1801131, C-allele, and rs1801133, T-allele), and SERPINE1 (rs1799889, 4G allele) genes compared to the GOR. Similarly, genotypes with a minor allele in AMHR2, LHCGR, MTHFR, and SERPINE1 genes had a higher prevalence among POR patients with the polymorphic genotypes. However, further genotype stratification indicated that the minor alleles of these genes are not associated with poor response. Multivariate logistic analysis of clinical−demographic factors and polymorphic genotypes demonstrated a correlation between FSH levels and polymorphic genotypes of SERPINE1 in poor response status.

Conclusions

Despite a higher prevalence of AMHR2, LHCGR, MTHFR, and SERPINE1 variations in the patients with poor ovarian response, it seems that these variations are not associated with the ovarian response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boudjenah R, Molina-Gomes D, Torre A, Bergere M, Bailly M, Boitrelle F, et al. Genetic polymorphisms influence the ovarian response to rFSH stimulation in patients undergoing in vitro fertilization programs with ICSI. PLoS One. 2012;7:e38700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. van Loendersloot LL, van Wely M, Limpens J, Bossuyt PM, Repping S, van der Veen F. Predictive factors in in vitro fertilization (IVF): a systematic review and meta-analysis. Hum Reprod Update. 2010;16:577–89.

    Article  PubMed  Google Scholar 

  3. Ubaldi F, Vaiarelli A, D'Anna R, Rienzi L. Management of poor responders in IVF: is there anything new? Biomed Res Int. 2014;2014:352098.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Ubaldi FM, Rienzi L, Ferrero S, Baroni E, Sapienza F, Cobellis L, et al. Management of poor responders in IVF. Reprod BioMed Online. 2005;10:235–46.

    Article  PubMed  CAS  Google Scholar 

  5. Pandian Z, McTavish AR, Aucott L, Hamilton MP, Bhattacharya S. Interventions for 'poor responders' to controlled ovarian hyper stimulation (COH) in in-vitro fertilisation (IVF). Cochrane Database Syst Rev. 2010:Cd004379.

  6. Venetis CA, Kolibianakis EM, Tarlatzi TB, Tarlatzis BC. Evidence-based management of poor ovarian response. Ann N Y Acad Sci. 2010;1205:199–206.

    Article  PubMed  CAS  Google Scholar 

  7. Altmäe S, Hovatta O, Stavreus-Evers A, Salumets A. Genetic predictors of controlled ovarian hyperstimulation: where do we stand today? Hum Reprod Update. 2011;17:813–28.

    Article  PubMed  CAS  Google Scholar 

  8. Behre HM, Greb RR, Mempel A, Sonntag B, Kiesel L, Kaltwasser P, et al. Significance of a common single nucleotide polymorphism in exon 10 of the follicle-stimulating hormone (FSH) receptor gene for the ovarian response to FSH: a pharmacogenetic approach to controlled ovarian hyperstimulation. Pharmacogenet Genomics. 2005;15:451–6.

    Article  PubMed  CAS  Google Scholar 

  9. Thathapudi S, Kodati V, Erukkambattu J, Addepally U, Qurratulain H. Association of luteinizing hormone chorionic gonadotropin receptor gene polymorphism (rs2293275) with polycystic ovarian syndrome. Genet Test Mol Biomarkers. 2015;19:128–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Spandorfer SD, Babayan A, Davis OK, Rosenwaks Z, Witkin SS. A G→A polymorphism at position +331 in the progesterone receptor (PR) gene is strongly associated with oocyte donation (OD) outcome. Fertil Steril. 2007;88:S2.

    Article  Google Scholar 

  11. Hanevik HI, Hilmarsen HT, Skjelbred CF, Tanbo T, Kahn JA. Single nucleotide polymorphisms in the anti-Mullerian hormone signalling pathway do not determine high or low response to ovarian stimulation. Reprod BioMed Online. 2010;21:616–23.

    Article  PubMed  CAS  Google Scholar 

  12. Zeng S, Wang X, Wang Y, Xu Z, Zhang J, Liu W, et al. MTHFR C677T polymorphism is associated with follicle-stimulating hormone levels and controlled ovarian hyperstimulation response: a retrospective study from the clinical database. Fertil Steril. 2019;111:982–990.e982.

    Article  PubMed  CAS  Google Scholar 

  13. Azem F, Many A, Ben Ami I, Yovel I, Amit A, Lessing JB, et al. Increased rates of thrombophilia in women with repeated IVF failures. Hum Reprod. 2004;19:368–70.

    Article  PubMed  Google Scholar 

  14. Thaler CJ, Budiman H, Ruebsamen H, Nagel D, Lohse P. Effects of the common 677C>T mutation of the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene on ovarian responsiveness to recombinant follicle-stimulating hormone. Am J Reprod Immunol. 2006;55:251–8.

    Article  PubMed  CAS  Google Scholar 

  15. Thaler CJ. Folate Metabolism and Human Reproduction. Geburtshilfe Frauenheilkd. 2014;74:845–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kilbourne EJ, Scicchitano MS. The activation of plasminogen activator inhibitor-1 expression by IL-1beta is attenuated by estrogen in hepatoblastoma HepG2 cells expressing estrogen receptor alpha. Thromb Haemost. 1999;81:423–7.

  17. Jeon YJ, Kim YR, Lee BE, Cha SH, Moon MJ, Oh D, et al. Association of five common polymorphisms in the plasminogen activator inhibitor-1 gene with primary ovarian insufficiency. Fertil Steril. 2014;101:825–32.

    Article  PubMed  CAS  Google Scholar 

  18. Durlinger AL, Visser JA, Themmen AP. Regulation of ovarian function: the role of anti-Mullerian hormone. Reproduction. 2002;124:601–9.

    Article  PubMed  CAS  Google Scholar 

  19. Visser JA, de Jong FH, Laven JS, Themmen AP. Anti-Mullerian hormone: a new marker for ovarian function. Reproduction. 2006;131:1–9.

    Article  PubMed  CAS  Google Scholar 

  20. Peluso C, Fonseca FL, Gastaldo GG, Christofolini DM, Cordts EB, Barbosa CP, et al. AMH and AMHR2 polymorphisms and AMH serum level can predict assisted reproduction outcomes: a cross-sectional study. Cell Physiol Biochem. 2015;35:1401–12.

    Article  PubMed  CAS  Google Scholar 

  21. Cerra C, Newman WG, Tohlob D, Byers H, Horne G, Roberts SA, et al. AMH type II receptor and AMH gene polymorphisms are not associated with ovarian reserve, response, or outcomes in ovarian stimulation. J Assist Reprod Genet. 2016;33:1085–91.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lazaros L, Fotaki A, Pamporaki C, Hatzi E, Kitsou C, Zikopoulos A, et al. The ovarian response to standard gonadotropin stimulation is influenced by AMHRII genotypes. Gynecol Endocrinol. 2016;32:641–5.

    Article  PubMed  CAS  Google Scholar 

  23. Breen SM, Andric N, Ping T, Xie F, Offermans S, Gossen JA, et al. Ovulation involves the luteinizing hormone-dependent activation of G(q/11) in granulosa cells. Mol Endocrinol. 2013;27:1483–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Lei ZM, Mishra S, Zou W, Xu B, Foltz M, Li X, et al. Targeted disruption of luteinizing hormone/human chorionic gonadotropin receptor gene. Mol Endocrinol. 2001;15:184–200.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang FP, Poutanen M, Wilbertz J, Huhtaniemi I. Normal prenatal but arrested postnatal sexual development of luteinizing hormone receptor knockout (LuRKO) mice. Mol Endocrinol. 2001;15:172–83.

    Article  PubMed  CAS  Google Scholar 

  26. Piersma D, Verhoef-Post M, Look MP, Uitterlinden AG, Pols HA, Berns EM, et al. Polymorphic variations in exon 10 of the luteinizing hormone receptor: functional consequences and associations with breast cancer. Mol Cell Endocrinol. 2007;276:63–70.

    Article  PubMed  CAS  Google Scholar 

  27. Lindgren I, Baath M, Uvebrant K, Dejmek A, Kjaer L, Henic E, et al. Combined assessment of polymorphisms in the LHCGR and FSHR genes predict chance of pregnancy after in vitro fertilization. Hum Reprod. 2016;31:672–83.

    Article  PubMed  CAS  Google Scholar 

  28. Simoni M, Tuttelmann F, Michel C, Bockenfeld Y, Nieschlag E, Gromoll J. Polymorphisms of the luteinizing hormone/chorionic gonadotropin receptor gene: association with maldescended testes and male infertility. Pharmacogenet Genomics. 2008;18:193–200.

    Article  PubMed  CAS  Google Scholar 

  29. Ghaderian SMH, Akbarzadeh R, Mohajerani F, Khodaii Z, Salehpour S. The implication of single-nucleotide polymorphisms in ovarian hyperstimulation syndrome. Mol Reprod Dev. 2019;86:964–71.

  30. Tamura T, Picciano MF. Folate and human reproduction. Am J Clin Nutr. 2006;83:993–1016.

    Article  PubMed  CAS  Google Scholar 

  31. Zetterberg H, Regland B, Palmer M, Ricksten A, Palmqvist L, Rymo L, et al. Increased frequency of combined methylenetetrahydrofolate reductase C677T and A1298C mutated alleles in spontaneously aborted embryos. Eur J Hum Genet. 2002;10:113–8.

    Article  PubMed  CAS  Google Scholar 

  32. Goyette P, Pai A, Milos R, Frosst P, Tran P, Chen Z, et al. Gene structure of human and mouse methylenetetrahydrofolate reductase (MTHFR). Mamm Genome. 1998;9:652–6.

    Article  PubMed  CAS  Google Scholar 

  33. D'Elia PQ, dos Santos AA, Bianco B, Barbosa CP, Christofolini DM, Aoki T. MTHFR polymorphisms C677T and A1298C and associations with IVF outcomes in Brazilian women. Reprod BioMed Online. 2014;28:733–8.

    Article  PubMed  CAS  Google Scholar 

  34. Robker RL, Akison LK, Russell DL. Control of oocyte release by progesterone receptor-regulated gene expression. Nucl Recept Signal. 2009;7:e012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Cramer DW, Hornstein MD, McShane P, Powers RD, Lescault PJ, Vitonis AF, et al. Human progesterone receptor polymorphisms and implantation failure during in vitro fertilization. Am J Obstet Gynecol. 2003;189:1085–92.

    Article  PubMed  CAS  Google Scholar 

  36. De Vivo I, Huggins GS, Hankinson SE, Lescault PJ, Boezen M, Colditz GA, et al. A functional polymorphism in the promoter of the progesterone receptor gene associated with endometrial cancer risk. Proc Natl Acad Sci U S A. 2002;99:12263–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Gerotziafas GT, Van Dreden P, Mathieu d'Argent E, Lefkou E, Grusse M, Comtet M, et al. Impact of blood hypercoagulability on in vitro fertilization outcomes: a prospective longitudinal observational study. Thromb J. 2017;15:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lane DA, Grant PJ. Role of hemostatic gene polymorphisms in venous and arterial thrombotic disease. Blood. 2000;95:1517–32.

    Article  PubMed  CAS  Google Scholar 

  39. Ye Y, Vattai A, Zhang X, Zhu J, Thaler CJ, Mahner S, et al. Role of plasminogen activator inhibitor type 1 in pathologies of female reproductive diseases. Int J Mol Sci. 2017;18:1651.

  40. Chan WS. The 'ART' of thrombosis: a review of arterial and venous thrombosis in assisted reproductive technology. Curr Opin Obstet Gynecol. 2009;21:207–18.

    Article  PubMed  Google Scholar 

  41. Ivanov P, Gacheva S, Konova E, Komsa-Penkova R. Implication of PAI-1 4G/5G polymorphism in recurrent implantation failure after IVF. Akush Ginekol (Sofiia). 2014;53:25–9.

    CAS  Google Scholar 

  42. Zhao L, Bracken MB, Dewan AT, Chen S. Association between the SERPINE1 (PAI-1) 4G/5G insertion/deletion promoter polymorphism (rs1799889) and pre-eclampsia: a systematic review and meta-analysis. Mol Hum Reprod. 2013;19:136–43.

    Article  PubMed  CAS  Google Scholar 

  43. Garcia MDS, Sung N, Mullenix TM, Dambaeva S, Beaman K, Gilman-Sachs A, et al. Plasminogen activator inhibitor-1 4G/5G polymorphism is associated with reproductive failure: metabolic, hormonal, and immune profiles. Am J Reprod Immunol. 2016;76:70–81.

    Article  CAS  Google Scholar 

  44. Glueck CJ, Phillips H, Cameron D, Wang P, Fontaine RN, Moore SK, et al. The 4G/4G polymorphism of the hypofibrinolytic plasminogen activator inhibitor type 1 gene: an independent risk factor for serious pregnancy complications. Metabolism. 2000;49:845–52.

    Article  PubMed  CAS  Google Scholar 

  45. Kydonopoulou K, Delkos D, Rousso D, Ilonidis G, Mandala E. Association of plasminogen activator inhibitor-type 1 (PAI-1) -675 4G/5G polymorphism with unexplained female infertility. Hippokratia. 2017;21:180–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Khosravi F, Zarei S, Ahmadvand N, Akbarzadeh-Pasha Z, Savadi E, Zarnani AH, et al. Association between plasminogen activator inhibitor 1 gene mutation and different subgroups of recurrent miscarriage and implantation failure. J Assist Reprod Genet. 2014;31:121–4.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the medical and nursing staff of the Erfan, Laleh, and Taleghani hospitals in Tehran, Iran, for their helpful collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saghar Salehpour.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaderian, S.M.H., Akbarzadeh, R. & Salehpour, S. Involvement of single nucleotide polymorphisms in ovarian poor response. J Assist Reprod Genet 38, 2405–2413 (2021). https://doi.org/10.1007/s10815-021-02242-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-021-02242-w

Keywords

Navigation