Skip to main content
Log in

Maternally contributed Nlrp9b expressed in human and mouse ovarian follicles contributes to early murine preimplantation development

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The aim of the study is to investigate presence and role of the gene encoding the maternally contributed nucleotide-binding oligomerization domain (NOD)–like receptors with a pyrin domain (PYD)–containing protein 9 (NLRP9) in human and mouse ovaries, respectively, and in preimplantation mouse embryo development by knocking down Nlrp9b.

Methods

Expression levels of NLRP9 mRNA in human follicles were extracted from RNA sequencing data from previous studies. In this study, we performed a qPCR analysis of Nlpr9b mRNA in mouse oocytes and found it present. Intracellular ovarian distribution of NLRP9B protein was accomplished using immunohistochemistry. The distribution of NLRP9B was explored using a reporter gene approach, fusing NLRP9B to green fluorescent protein and microinjection of in vitro–generated mRNA. Nlrp9b mRNA function was knocked down by microinjection of short interference (si) RNA targeting Nlrp9b, into mouse pronuclear zygotes. Knockdown of the Nlrp9b mRNA transcript was confirmed by qPCR.

Result

We found that the human NLRP9 gene and its corresponding protein are highly expressed in human primordial and primary follicles. The NLRP9B protein is localized to the cytoplasm in the blastomeres of a 2-cell embryo in mice. SiRNA-mediated knockdown of Nlrp9b caused rapid elimination of endogenous Nlrp9b mRNA and premature embryo arrest at the 2- to 4-cell stages compared with that of the siRNA-scrambled control group.

Conclusions

These results suggest that mouse Nlrp9b, as a maternal effect gene, could contribute to mouse preimplantation embryo development. It remains to investigate whether NLRP9 have a crucial role in human preimplantation embryo and infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kim YK, Shin JS, Nahm MH. NOD-like receptors in infection, immunity, and diseases. Yonsei Med J. 2016;57(1):5–14. https://doi.org/10.3349/ymj.2016.57.1.5.

    Article  CAS  PubMed  Google Scholar 

  2. Tian X, Pascal G, Monget P. Evolution and functional divergence of NLRP genes in mammalian reproductive systems. BMC Evol Biol. 2009;9:202. https://doi.org/10.1186/1471-2148-9-202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Amoushahi M, Sunde L, Lykke-Hartmann K. The pivotal roles of the NOD-like receptors with a PYD domain, NLRPs, in oocytes and early embryo development. Biol Reprod. 2019. https://doi.org/10.1093/biolre/ioz098.

  4. Kim KH, Lee KA. Maternal effect genes: findings and effects on mouse embryo development. Clin Exp Reprod Med. 2014;41(2):47–61. https://doi.org/10.5653/cerm.2014.41.2.47.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tong ZB, Gold L, Pfeifer KE, Dorward H, Lee E, Bondy CA, et al. Mater, a maternal effect gene required for early embryonic development in mice. Nat Genet. 2000;26(3):267–8. https://doi.org/10.1038/81547.

    Article  CAS  PubMed  Google Scholar 

  6. Hamatani T, Falco G, Carter MG, Akutsu H, Stagg CA, Sharov AA, et al. Age-associated alteration of gene expression patterns in mouse oocytes. Hum Mol Genet. 2004;13(19):2263–78. https://doi.org/10.1093/hmg/ddh241.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang P, Dixon M, Zucchelli M, Hambiliki F, Levkov L, Hovatta O, et al. Expression analysis of the NLRP gene family suggests a role in human preimplantation development. PLoS One. 2008;3(7):e2755. https://doi.org/10.1371/journal.pone.0002755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tschopp J, Martinon F, Burns K. NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol. 2003;4(2):95–104. https://doi.org/10.1038/nrm1019.

    Article  CAS  PubMed  Google Scholar 

  9. Peng H, Zhang W, Xiao T, Zhang Y. Expression patterns of Nlrp9a, Nlrp9b and Nlrp9c during mouse development. Biologia. 2014;69(107):107. https://doi.org/10.2478/s11756-013-0287-y.

    Article  CAS  Google Scholar 

  10. Wei Y, Li L, Zhou X, Zhang QY, Dunbar A, Liu F, et al. Generation and characterization of a novel Cyp2a(4/5)bgs-null mouse model. Drug Metab Dispos. 2013;41(1):132–40. https://doi.org/10.1124/dmd.112.048736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tong ZB, Gold L, De Pol A, Vanevski K, Dorward H, Sena P, et al. Developmental expression and subcellular localization of mouse MATER, an oocyte-specific protein essential for early development. Endocrinology. 2004;145(3):1427–34. https://doi.org/10.1210/en.2003-1160.

    Article  CAS  PubMed  Google Scholar 

  12. Peng H, Lin X, Li W, Zhang W. Expression and localization of Nlrp4g in mouse preimplantation embryo. Zygote. 2015;23(6):846–51. https://doi.org/10.1017/S0967199414000525.

    Article  CAS  PubMed  Google Scholar 

  13. Peng H, Zhang W, Xiao T, Zhang Y. Nlrp4g is an oocyte-specific gene but is not required for oocyte maturation in the mouse. Reprod Fertil Dev. 2014;26(5):758–68. https://doi.org/10.1071/RD12409.

    Article  CAS  PubMed  Google Scholar 

  14. Peng H, Lin X, Liu F, Wang C, Zhang W. NLRP9B protein is dispensable for oocyte maturation and early embryonic development in the mouse. J Reprod Dev. 2015;61(6):559–64. https://doi.org/10.1262/jrd.2015-050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dalbies-Tran R, Papillier P, Pennetier S, Uzbekova S, Monget P. Bovine mater-like NALP9 is an oocyte marker gene. Mol Reprod Dev. 2005;71(4):414–21. https://doi.org/10.1002/mrd.20298.

    Article  CAS  PubMed  Google Scholar 

  16. Peng H, Zhang W, Xiao T, Zhang Y. Expression patterns of Nlrp9a, Nlrp9b and Nlrp9c during mouse development. Biologia. 2014;69:107–12.

    Article  CAS  Google Scholar 

  17. Peng H, Chang B, Lu C, Su J, Wu Y, Lv P, et al. Nlrp2, a maternal effect gene required for early embryonic development in the mouse. PLoS One. 2012;7(1):e30344. https://doi.org/10.1371/journal.pone.0030344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhu S, Ding S, Wang P, Wei Z, Pan W, Palm NW, et al. Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells. Nature. 2017;546(7660):667–70. https://doi.org/10.1038/nature22967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Buzdin AA, Prassolov V, Garazha AV. Friends-enemies: endogenous retroviruses are major transcriptional regulators of human DNA. Front Chem. 2017;5:35. https://doi.org/10.3389/fchem.2017.00035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Macfarlan TS, Gifford WD, Driscoll S, Lettieri K, Rowe HM, Bonanomi D, et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature. 2012;487(7405):57–63. https://doi.org/10.1038/nature11244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Durruthy-Durruthy J, Sebastiano V, Wossidlo M, Cepeda D, Cui J, Grow EJ, et al. The primate-specific noncoding RNA HPAT5 regulates pluripotency during human preimplantation development and nuclear reprogramming. Nat Genet. 2016;48(1):44–52. https://doi.org/10.1038/ng.3449.

    Article  CAS  PubMed  Google Scholar 

  22. Schoorlemmer J, Perez-Palacios R, Climent M, Guallar D, Muniesa P. Regulation of mouse retroelement MuERV-L/MERVL expression by REX1 and epigenetic control of stem cell potency. Front Oncol. 2014;4:14. https://doi.org/10.3389/fonc.2014.00014.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ernst EH, Franks S, Hardy K, Villesen P, Lykke-Hartmann K. Granulosa cells from human primordial and primary follicles show differential global gene expression profiles. Hum Reprod. 2018;33(4):666–79. https://doi.org/10.1093/humrep/dey011.

    Article  CAS  PubMed  Google Scholar 

  24. Ernst EH, Grondahl ML, Grund S, Hardy K, Heuck A, Sunde L, et al. Dormancy and activation of human oocytes from primordial and primary follicles: molecular clues to oocyte regulation. Hum Reprod. 2017;32(8):1684–700. https://doi.org/10.1093/humrep/dex238.

    Article  CAS  PubMed  Google Scholar 

  25. Hogan B, Beddington R, Costantini F, Lacy E. Manipulating the mouse embryo: a laboratory manual. 2nd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1994.

    Google Scholar 

  26. Mamo S, Gal AB, Bodo S, Dinnyes A. Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro. BMC Dev Biol. 2007;7:14. https://doi.org/10.1186/1471-213X-7-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–8.

    Article  CAS  Google Scholar 

  28. Lemaire P, Garrett N, Gurdon JB. Expression cloning of Siamois, a Xenopus homeobox gene expressed in dorsal-vegetal cells of blastulae and able to induce a complete secondary axis. Cell. 1995;81(1):85–94.

    Article  CAS  Google Scholar 

  29. Albertsen M, Teperek M, Elholm G, Fuchtbauer EM, Lykke-Hartmann K. Localization and differential expression of the Kruppel-associated box zinc finger proteins 1 and 54 in early mouse development. DNA Cell Biol. 2010;29(10):589–601. https://doi.org/10.1089/dna.2010.1040.

    Article  CAS  PubMed  Google Scholar 

  30. Jeong YJ, Choi HW, Shin HS, Cui XS, Kim NH, Gerton GL, et al. Optimization of real time RT-PCR methods for the analysis of gene expression in mouse eggs and preimplantation embryos. Mol Reprod Dev. 2005;71(3):284–9. https://doi.org/10.1002/mrd.20269.

    Article  CAS  PubMed  Google Scholar 

  31. Chang BH, Liu X, Liu J, Quan FS, Guo ZK, Zhang Y. Developmental expression and possible functional roles of mouse Nlrp4e in preimplantation embryos. In Vitro Cell Dev Biol Anim. 2013;49(7):548–53. https://doi.org/10.1007/s11626-013-9638-9.

    Article  CAS  PubMed  Google Scholar 

  32. Pfender S, Kuznetsov V, Pasternak M, Tischer T, Santhanam B, Schuh M. Live imaging RNAi screen reveals genes essential for meiosis in mammalian oocytes. Nature. 2015;524(7564):239–42. https://doi.org/10.1038/nature14568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McDaniel P, Wu X. Identification of oocyte-selective NLRP genes in rhesus macaque monkeys (Macaca mulatta). Mol Reprod Dev. 2009;76(2):151–9. https://doi.org/10.1002/mrd.20937.

    Article  CAS  PubMed  Google Scholar 

  34. Ponsuksili S, Brunner RM, Goldammer T, Kuhn C, Walz C, Chomdej S, et al. Bovine NALP5, NALP8, and NALP9 genes: assignment to a QTL region and the expression in adult tissues, oocytes, and preimplantation embryos. Biol Reprod. 2006;74(3):577–84. https://doi.org/10.1095/biolreprod.105.045096.

    Article  CAS  PubMed  Google Scholar 

  35. Mahadevan S, Sathappan V, Utama B, Lorenzo I, Kaskar K, Van den Veyver IB. Maternally expressed NLRP2 links the subcortical maternal complex (SCMC) to fertility, embryogenesis and epigenetic reprogramming. Sci Rep. 2017;7:44667. https://doi.org/10.1038/srep44667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Qin D, Gao Z, Xiao Y, Zhang X, Ma H, Yu X, et al. The subcortical maternal complex protein Nlrp4f is involved in cytoplasmic lattice formation and organelle distribution. Development. 2019;146(20). https://doi.org/10.1242/dev.183616.

Download references

Acknowledgements

The authors wish to thank past and current members of the Lykke-Hartmann Laboratory (AU) for their scientific discussions.

Funding

This work was supported by grants from the Carlsberg Foundation (CF18-0474 to MA), Aarhus University Research Foundation (to LS and KLH) and the Independent Research Fund Denmark – Medical Sciences (grant number 6120-00027B), the Novo Nordisk Foundation (NNF16OC0022480 and NNF170C0026820), Kong Christian Den Tiendes Fond, Th. Maigaards Eft. Fru Lily Benthine Lunds Fond, Toyota Fonden, Augustinus Fonden and Fonden til Lægevidenskabens Fremme (to KLH).

Author information

Authors and Affiliations

Authors

Contributions

KLH and LS conceived the study. AG and AH performed the cloning work. EE provided human tissue. MA performed the IHC. JA and AH performed the qPCR analysis. PS, MA, MSN and KLH performed the confocal analysis. LLS, MA and KLH performed the embryo work and siRNA microinjections. All of the authors analyzed and interpreted the results. KLH wrote the manuscript. All of the authors approved the final manuscript.

Corresponding author

Correspondence to Karin Lykke-Hartmann.

Ethics declarations

Written informed consent was obtained from all patients. The study was approved by Danish Scientific Ethical Committee (approval number: KF299017 and J7KF/01/170/99) and the Danish Data Protection Agency. All of the procedures were approved by the Ethics Committee for the Use of Laboratory Animals in Aarhus University (2015−15−0201−00800 to KLH).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amoushahi, M., Steffensen, L.L., Galieva, A. et al. Maternally contributed Nlrp9b expressed in human and mouse ovarian follicles contributes to early murine preimplantation development. J Assist Reprod Genet 37, 1355–1365 (2020). https://doi.org/10.1007/s10815-020-01767-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-020-01767-w

Keywords

Navigation