Skip to main content
Log in

Dual-Channel More Flexible Salamo-Like Chemosensor for Fluorogenic Sensing of Copper Ion in Semi-Aqueous Medium

  • Published:
Journal of Applied Spectroscopy Aims and scope

The optical properties of the symmetric salamo-like chemical probe (H2CS) of Cu2+ were studied in EtOH/H2O (1:1, v/v) solution by UV-Vis and fluorescence spectroscopy. In the fluorescence spectrum, the coordination of Cu2+ with H2CS results in fluorescence quenching owing to the paramagnetic nature of Cu2+ ions. The binding constant of Cu2+ to the H2CS sensor was calculated as 1.17 × 1011 M–1 and LOD was obtained as 5.3 × 10–8 M. When Cu2+ ions were added, the UV-Vis spectra changed, obviously due to the electron transfer from sensor to metal bond, and a new absorption band appeared at 372 nm. When the ethylenediaminetetraacetic acid (EDTA) solution was added to the H2CS–Cu2+ solution, causing a large binding constant, with EDTA releasing the free sensor molecule and finally achieving a fluorescence shutdown phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. More , S. Mula, S. Thakare, S. Chakraborty, A. K. Ray, N. Sekar, and S. Chattopadhyay, J. Lumin., 190, 476–484 (2017).

    Article  Google Scholar 

  2. A. Zetzsche, N. Schunter, J. Zentek, and R. Pieper, J. Trace. Elem. Med. Biol., 35, 1–6 (2016).

    Article  Google Scholar 

  3. X. Xu, Y. J. Li, T. Feng, W. K. Dong, and Y. J. Ding, J. Lumin., 36, 169–179 (2021).

    Article  Google Scholar 

  4. Q. P. Kang, X. Y. Li, L. Wang, Y. Zhang, and W. K. Dong, Appl. Organomet. Chem., 33, e5013 (2019).

    Article  Google Scholar 

  5. J. R. Zimmerman, C. Criss, S. Evans, M. Ernst, M. Nieszala, A. Stafford, and J. Szczerba, Tetrahedron Lett., 59, 2473–2476 (2018).

    Article  Google Scholar 

  6. L. Z. Liu, L. Wang, M. Yu, Q. Zhao, Y. Zhang, Y. X. Sun, and W. K. Dong, Spectrochim. Acta A, 222, Article ID 117209 (2019).

  7. M. Panchal, M. Athar, P. C. Jhac, A. Kongor, V. Mehta, and V. Jain, J. Lumin., 192, 256–262 (2017).

    Article  Google Scholar 

  8. X. Y. Li, Q. P. Kang, C. Liu, Y. Zhang, and W. K. Dong, New J. Chem., 43, 4605–4619 (2019).

    Article  Google Scholar 

  9. R. Goel, S. Sharma, K. Paul, and V. Luxami, Sens. Actuators B, 246, 776–782 (2017).

    Article  Google Scholar 

  10. A. Singh and G. Ramanathan, J. Lumin., 182, 220–225 (2017).

    Article  Google Scholar 

  11. S. Daly, G. Knight, M. A. Halim, A. C. M. Kulesza, F. Choi, and P. Chirot, J. Am. Soc. Mass Spectrom., 28, 38–49 (2017).

    Article  ADS  Google Scholar 

  12. J. Chang, S. Z. Zhang, Y. Wu, H. Z. Zhang, and Y. X. Sun, Transit. Met. Chem., 45, 279–293 (2020).

    Article  Google Scholar 

  13. L. Wang, Z. L. Wei, Z. Z. Chen, C. Liu, W. K. Dong, and Y. J. Ding, Microchem. J., 155, Article ID 104801 (2020).

  14. R. Nakamoto, Y. Nakamoto, T. Ishimori, Y. Fushimi, A. Kido, and K. Togashi, J. Nucl. Med., 59, 846–851 (2017).

    Article  Google Scholar 

  15. A. K. Manna, J. Mondal, K. Rout, and G. K. Patra , Sens. A ctuators B, 275, 350–358 (2018).

    Article  Google Scholar 

  16. R. N. Bian, J. F. Wang, Y. J. Li, Y. Zhang, and W. K. Dong, J. Photochem. Photobiol. A, 400, Article ID 112719 (2020).

  17. X. Xu, R. N. Bian, S. Z. Guo, W. K. Dong, and Y. J. Ding, Inorg. Chim. Acta, 513, Article ID 119945 (2020).

  18. A. K. Mahapatra, G. Hazra, and N. K. Das, Sens. Actuators B, 156, 456–462 (2014).

    Article  Google Scholar 

  19. S. Sumriddetkajorn, K. Chaitavon, and Y. Intarvanne, Sens. Actuators B, 182, 592–597 (2013).

    Article  Google Scholar 

  20. C. Liu, Z. L. Wei, H. R. Mu, W. K. Dong, and Y. J. Ding, J. Photochem. Photobiol. A, 397, Article ID 112569 (2020).

  21. K. Kise, Y. Hong, N. Fukui, D. Shimizu, D. Kim, and A. Osuka, Mech. J. Chem. Eur., 24, 8306–8310 (2018).

    Article  Google Scholar 

  22. M. H. Lee, J. S. Kim, and J. L. Sessler, Chem. Soc. Rev., 13, 4185–4191 (2015).

    Article  Google Scholar 

  23. S. Z. Zhang, J. Chang, H. J. Zhang, Y. X. Sun, Y. Wu, and Y. B. Wang, Chin. J. Inorg. Chem., 36, 503–514 (2020).

    ADS  Google Scholar 

  24. Y. Zhang, M. Yu, Y. Q. Pan, Y. Zhang, L. Xu, and W. K. Dong, Appl. Organomet. Chem., 34, e5442 (2020).

    Google Scholar 

  25. K. Ponnuvel, G. Banuppriya, and V. Padmini, Sens. Actuators B, 234, 34–45 (2016).

    Article  Google Scholar 

  26. Y. Q. Pan, X. Xu, Y. Zhang, Y. Zhang, and W. K. Dong, Spectrochim. Acta A, 229, Article ID 117927 (2020).

  27. R. R. Islangulov, D. V. Kozlov, and F. N. Castellano, Chem. Commun., 30, 3776–3778 (2005).

    Article  Google Scholar 

  28. C. Liu, X. X. An, Y. F. Cui, K. F. Xie, and W. K. Dong, Appl. Organomet. Chem., 34, e5272 (2020).

    Google Scholar 

  29. S. K. Sahoo, D. Sharma, A. Moirangthem, A. Kuba, R. Thomas, R. Kumar, A. Kuwar, H. J. Choi, and A. Basu, J. Lumin., 172, 297–303 (2016).

    Article  Google Scholar 

  30. Y. Q. Pan, Y. Zhang, M. Yu, Y. Zhang, and L. Wang, Appl. Organomet. Chem., 34, e5441 (2020).

    Article  Google Scholar 

  31. Z. L. Wei, L. Wang, J. F. Wang, W. T. Guo, Y. Zhang, and W. K. Dong, Spectrochim. Acta A, 228, Article ID 117775 (2020).

  32. Y. Upadhyay, S. Bothra, R. Kumar, and S. K. Sahoo, Anal. Chem. Select., 3, 6892–6896 (2018).

    Google Scholar 

  33. Y. Zhang, L. Z. Liu, Y. D. Peng, N. Li, and W. K. Dong, Transit. Met. Chem., 44, 627–639 (2019).

    Article  Google Scholar 

  34. L. W. Zhang, Y. Zhang, Y. F. Cui, M. Yu, and W. K. Dong, Inorg. Chim. Acta, 506, Article ID 119534 (2020).

  35. J. B. George, Inorg. Chim. Acta, 393, 135–141 (2012).

    Article  Google Scholar 

  36. Y. X. Sun, Y. Q. Pan, X. Xu, and Y. Zhang, Crystals, 9, 607 (2019).

    Article  Google Scholar 

  37. S. Kine, T. Tadokoro, and T. Nabeshima, Inorg. Chem., 51, 11478–11486 (2012).

    Article  Google Scholar 

  38. X. X. An, Q. Zhao, H. R. Mu, and W. K. Dong, Crystals, 9, 101 (2019).

    Article  Google Scholar 

  39. L. Z. Liu, M. Yu, X. Y. Li, Q. P. Kang, and W. K. Dong, Chin. J. Inorg. Chem., 35, 1283–1294 (2019).

    Google Scholar 

  40. R. N. Bian, J. F. Wang, Y. J. Li, Y. Zhang, and W. K. Dong, J. Photochem. Photobiol. A, 400, Article ID 112719 (2020).

  41. Q. P. Kang, X. Y. Li, Z. L. Wei, Y. Zhang, and W. K. Dong, Polyhedron, 165, 38–50 (2019).

    Article  Google Scholar 

  42. H. R. Mu, X. X. An, C. Liu, Y. Zhang, and W. K. Dong, J. Struct. Chem., 61, 1218–1229 (2020).

    Article  Google Scholar 

  43. X. X. An, Z. Z. Chen, H. R. Mu, and L. Zhao, Inorg. Chim. Acta, 511, Article ID 119823 (2020).

  44. M. Yu, Y. Zhang, Y. Q. Pan, and L. Wang, Inorg. Chim. Acta, 509, Article ID 119701 (2020).

  45. A. G. Jadhav and S. N. Kothavale, Dyes Pigm., 138, 56–67 (2017).

    Article  Google Scholar 

  46. J. H. Hu, Y. Sun, J. Qi, Q. Li, and T. B. Wei, Spectrochim. Acta A, 175, 125–133 (2017).

    Article  ADS  Google Scholar 

  47. L. Wang, Z. L. Wei, C. Liu, W. K. Dong, and J. X. Ru, Spectrochim. Acta A, 239, Article ID 118496 (2020).

  48. S. Z. Zhang, G. Guo, W. M. Ding, J. Li, Y. W, H. J. Zhang, J. Q. Guo, and Y. X. Sun, J. Mol. Struct., 20, Article ID 129627 (2020).

  49. Y. Upadhyaya, T. Ananda, L. T. Babub, P. Pairab, A. K. Skc, R. Kumara, and S. K. Sahoo, J. Photochem. Photobiol. A, 361, 34–40 (2018).

    Article  Google Scholar 

  50. M. Yu, H. R. Mu, L. Z. Liu, N. Li, Y. Bai, and X. Y. Dong, Chin. J. Inorg. Chem., 35, 1109–1120 (2019).

    Google Scholar 

  51. T. Anand and S. K. Sahoo, Phys. Chem. Chem. Phys., 22, 11839–11845 (2019).

    Article  Google Scholar 

  52. Z. Z. Chen, W. Z. Zhang, T. Zhang, Y. Zhang, and W. K. Dong, New J. Chem., 44, 19836–19849 (2020).

    Article  Google Scholar 

  53. X. X. An, C. Liu, Z. Z. Chen, K. F. Xie, and Y. Zhang, Crystals, 9, 602 (2019).

    Article  Google Scholar 

  54. Y. S. Borghei, M. Hosseini, and M. R. Ganjali, Sens. Actuators B, 273, 1618–1626 (2018).

    Article  Google Scholar 

  55. Q. Zhao, X. X. An, L. Z. Liu, and W. K. Dong, Inorg. Chim. Acta, 490, 6–15 (2019).

    Article  ADS  Google Scholar 

  56. H. R. Mu, M. Yu, L. Wang, Y. Zhang, and Y. J. Ding, Phosphorus, Sulfur, Silicon Rel. Elem., 195, 730–739 (2020).

    Article  Google Scholar 

  57. S. T. Zhang, P. P. Li, and C. Y. Liao, Spectrochim. Acta A, 201, 161–169 (2018).

    Article  ADS  Google Scholar 

  58. A. Roy, S. Dey, and P. Roy, Sensors Actuators B, 237 628–642 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W.-K. Dong or Y.-J. Ding.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 1, p. 137, January–February, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, RY., Gao, SX., Liu, C. et al. Dual-Channel More Flexible Salamo-Like Chemosensor for Fluorogenic Sensing of Copper Ion in Semi-Aqueous Medium. J Appl Spectrosc 89, 177–185 (2022). https://doi.org/10.1007/s10812-022-01341-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01341-5

Keywords

Navigation