Skip to main content
Log in

Flight Parameter Setting of Unmanned Aerial Vehicle Hyperspectral Load

  • Published:
Journal of Applied Spectroscopy Aims and scope

Correct flight parameters are critical for obtaining high-quality unmanned aerial vehicle (UAV) remote sensing images. For the UAV, the Rikola hyperspectral load needs to set the instrument's exposure time, UAV flight mode, flight altitude, and other issues when acquiring data. Using the control variable method, UAV Rikola hyperspectral images were collected under different parameters, and the gray-scale target and image's quantitative evaluation index was used to obtain the spectral curves of gray-scale targets, ground features, signal-to-noise ratio (SNR), information entropy, and sharpness of imagery. The results of the comparative analysis show: the vegetation hyperspectral data quality was better when determining the Rikola hyperspectral exposure time using the 64% diffuse plate; UAV hover mode and cruise mode had little impact on data quality; when the flight altitude was within 100 m above ground level, the higher the flying height, the better the data quality. This study therefore provides evidence for obtaining high-quality data using UAV hyperspectral load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. . H. Y. Cen, L. Wan, and J. P. Zhu, J. Plant Methods, 15, 1 (2019).

    Article  ADS  Google Scholar 

  2. . M. Li, Y. Q. Huang, X. M. Li, D. X. Peng, and J. X. Xie, J. Trans. Chin. Soc. Agric. Eng., 34, No. 4, 108–114 (2018).

    Google Scholar 

  3. K. Uto, H. Seki, G. Saito, et al., Workshop on Hyperspectral Image & Signal Processing: Evolution in Remote Sensing (2017).

  4. P. Mark, B. Dmitry, G. Kevin, K. J. Gaston, and F. Gonzalez, J. Sensors, 18, No. 7, 20–26 (2018).

    Google Scholar 

  5. X. L. Hou, H. B. Luo, and P. P. Zhou, J. Infrared Laser Eng., 46, No. 7, 263–269 (2017).

    Google Scholar 

  6. J. Y. Ning, The Research on Realization of the Auto-Exposure Algorithm Based on Entropy, D. First Research Institute of China Aerospace Science and Technology Corporation (2016), pp. 75–87.

  7. P. Walczykowski, K. Siok, and A. Jenerowicz, J. Int. Arch. Photogrammetry, Remote Sensing Spatial Inform. Sci., 41, 1065–1069 (2016).

  8. Y. Huang, X. H. Chen, Y. L. Liu, Z. H. Huang, M. Sun, and Y. C. Su, J. Anhui Agric. Sci., 46, No. 11, 170–173 (2018).

    Google Scholar 

  9. B. Liu, Classifi cation of Crops Based on UAV Remote Sensing Images, D. University of Chinese Academy of Sciences (2019), pp. 29–44.

  10. J. Lee and S. Sung, J. Spatial Inform. Res., 24, No. 2, 141–154 (2016).

    Article  Google Scholar 

  11. K. He, Research on Key Technologies of Aerial Remote Sensing System Based Small UAV, D. Chongqing University (2017), pp. 15–32.

  12. J. J. Yang, Y. Q. Zhao, C. Yi, and J. C. W. Chan, J. Remote Sens., 9, No. 4, 305 (2017).

    Article  ADS  Google Scholar 

  13. X. H. Cao, X. H. Li, Z. H. Li, and L. C. Jiao, Int. J. Remote Sens., 38, No. 12, 3656–3668 (2017).

    Article  Google Scholar 

  14. X. Y. Wang, J. Q. Li, and J. Li, J. IOP Conf. Ser. Mater. Sci. Eng., 466, 12–53 (2018).

    Google Scholar 

  15. H. Saari, I. Pölönen, H. Salo, et al., J. Proc. SPIE – The International Society for Optical Engineering, 8889, 6 (2013).

    Google Scholar 

  16. A. M. Poncet, K. Thorsten, B Christian, et al., J. Remote Sens., 16, 11 (2019).

    Google Scholar 

  17. B. Zhu, X. H. Wang, L. L. Tang, and C. R. Li, J. Remote Sens. Technol. Appl., 25, No. 2, 303–309 (2010).

    Google Scholar 

  18. Q. Chen and Y. Q. Xue, J. Remote Sens., 4, 284–289 (2000).

    Google Scholar 

  19. B. R. Corner, Int. J. Remote Sens., 24, No. 4, 689–702 (2003).

    Article  Google Scholar 

  20. D. Y. Tsai, Y. Lee, and E Matsuyama, J. Digital Imaging, 21, No. 3, 338–347 (2008).

    Article  Google Scholar 

  21. H. Gao, Q. G. Miao, J. C. Yang, and Z. X. Ma, J. IEEE Access, 99, 1–5 (2018).

    Google Scholar 

  22. B. Y. Qin, R. Shang, S. Y. Li, B. Q. Hei, and Z. W. Liu, Rel iable Sharpness Automatic-Evaluation Method for Optical Remote Sensing Images, C. Image Processing & Analysis (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Zhao.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 1, p. 135, January–February, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, W., Zhao, Q., Ma, Y. et al. Flight Parameter Setting of Unmanned Aerial Vehicle Hyperspectral Load. J Appl Spectrosc 89, 159–169 (2022). https://doi.org/10.1007/s10812-022-01339-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01339-z

Keywords

Navigation