Skip to main content
Log in

Development and Validation of UV Spectrophotometric Method for Determination of Chrysin and Its Solubility Studies

  • Published:
Journal of Applied Spectroscopy Aims and scope

The present work is based on the method development and validation of the UV-spectrophotometric method for the quantitative estimation of chrysin. We studied how the nature of the solvent affects chrysin solubility. The stock and diluted solutions were scanned using a UV visible spectrophotometer to obtain the λmax. The absorbance of the samples was recorded to obtain a calibration curve, which was followed by regression using MS Excel and Sigma stat software. The method developed by this process was further validated using parameters such as linearity, precision, limit of detection, limit of quantification, accuracy, and ruggedness. The solubility of chrysin was checked at 35°C in different oils, solvents, and co-solvents. The λmax of chrysin in methanol was found to be 367 nm. The calibration curve of the drug follows linearity (2–10 μg/mL) with a correlation coefficient of 0.991. At three different levels, i.e., 80, 100, and 120%, the method's accuracy was checked utilizing the percent recovery (97–99.5%). The precision studies were carried out in terms of intraday and interday variations. The ruggedness of the proposed method was studied by taking two. The solubility of chrysin was found to be the maximum in methanol (216.80 ± 0.0097 μg/mL) among the oils, solvents, and co-solvents used. Thus, based on the experiments done, the developed method was observed to be accurate, precise, and reproducible. The viscosity of the solvent and the possibility of hydrogen bonding are two crucial factors that affected the solubility of chrysin in the solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kaur, A. Thakkar, and K. Nagpal, JPTRM, 7, 1–5 (2019).

    Article  Google Scholar 

  2. S. Nagdev, M. Bhurat, R. Usman, K. Gupta, U. Gandagulae, A Textbook of Pharmaceutical Quality Assurance, S. Vikas and Company, India, (2019), pp. 97–99.

    Google Scholar 

  3. H. Zhu, Y. Wang, Y. Liu, Y. Xia, and T. Tang, Food Anal. Methods, 3, 90–97 (2010).

    Article  Google Scholar 

  4. K. N. Prashanth, K. Basavaiah, and C. M. Xavier, JAAUBAS, 1, 43–52 (2014).

    Google Scholar 

  5. Y. U. Yuan, L. U. Houding, and C. H. Lijuan, Chin. J. Anal. Chem., 26, 489–493 (2008).

    Article  Google Scholar 

  6. S. Roy, A. Sil, and T. Chakraborty, J. Cell. Physiol., 4, 4888–4909 (2019).

    Article  Google Scholar 

  7. S. Lin, L. Zeng, G. Zhang, Y. Liao, and D. Gong, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 178, 71–78 (2017).

    Article  ADS  Google Scholar 

  8. X. Liang, Y. Zhang, W. Chen, P. Cai, S. Zhang, X. Chen, and S. Shi, J. Chromatogr. A, 1385, 69–76 (2015).

    Article  Google Scholar 

  9. S. Feizi, M. Jabbari, and A. Farajtabar, J. Mol. Liq., 1, 478–483 (2016).

    Article  Google Scholar 

  10. A. Panche, A. Diwan, and S. Chandra, JNS, 5, 1–15 (2016).

    Google Scholar 

  11. F. Bonetti, G. Brombo, G. Zuliani, In: Nootropics, Functional Foods, and Dietary Patterns for Prevention of Cognitive Decline. In Nutrition and Functional Foods for Healthy Aging, Ed. R. R. Watson, Academic Press (2017), pp. 211–232.

  12. H. Cho, C. W. Yun, and W. K. Park, Pharm. Res., 1, 37–43 (2004).

    Article  Google Scholar 

  13. U.S. National Library of Medicine, National Center for Biotechnology Information, https://pubchem.ncbi.nlm.nih.gov/#query=chrysin.

  14. V. Nikolovska, L. J. Klisarova, L. Suturkova, and K. Dorevski, Anal. Lett., 29, 97–115 (1996).

    Article  Google Scholar 

  15. L. Zhou, P. Zhang, G. Yang, R. Lin, W. Wang, T. Liu, L. Zhang, and J. Zhang, J. Chem. Eng. Data, 59, 2215–2220 (2014).

    Article  Google Scholar 

  16. G. T. Castro, F. H. Ferretti, and S. Blanco, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 62, 657–665 (2005).

    Article  ADS  Google Scholar 

  17. L. Zhou, P. Zhang, G. Yang, R. Lin, W. Wang, T. Liu, and J. Zhang, J. Chem. Eng. Data, 59, 2215–2220 (2014).

    Article  Google Scholar 

  18. G. M. Sulaiman, M. S. Jabir, and A. H. Hameed, Artif. Cells Nanomed. Biotechnol., 46, 708–720 (2018).

    Article  Google Scholar 

  19. R. Chadha, Y. Bhalla, A. Nandan, K. Chadha, and M. Karan, J. Pharm. Biomed. Anal., 134, 361–371 (2017).

    Article  Google Scholar 

  20. S. M. Kim, J. I. Jung, C. Chai, and J. Y. Imm, Nutrients, 11, 25–49 (2019).

    Google Scholar 

  21. N. Bolourchian, M. M. Mahboobian, and S. Dadashzadeh, IJPR, 12, 11–15 (2013).

    Google Scholar 

  22. S. H. Lee, Y. S. Lee, J. G. Song, and H. K. Han, Curr. Drug. Deliv., 16, 86–92 (2019).

    Article  Google Scholar 

  23. M. Maleque, M. R. Hasan, F. Hossen, and S. Safi , J. Pharm. Anal., 2, 454–457 (2012).

    Article  Google Scholar 

  24. S. H. Patil and M. V. Janjale, J. Pharm. Anal., 2, 470–477 (2012).

    Article  Google Scholar 

  25. National Center for Biotechnology Information. PubChem Database. Methanol, CID=887, https://pubchem.ncbi.nlm.nih.gov/compound/Methanol, accessed on Mar. 8, 2020 (2020).

  26. G. M. Sulaiman, M. S. Jabir, and A. H. Hameed, Artif. Cells Nanomed. Biotechnol., 46, 708–720 (2018).

    Article  Google Scholar 

  27. L. A. Javid, P. Soltanahmadi, M. Dadashpour, A. Shahriar, F. Raana, S. Javidfar, and N. Zarghami, Nutr. Cancer, 69, 1–10 (2017).

    Article  Google Scholar 

  28. ICH guidelines for Validation of analytical procedures: text and methodology Q2(R1).

  29. A. Azeem, M. Rizwan, and F. J. Ahmad, AAPS Pharm. Sci. Technol., 10, 69–76 (2009).

    Article  Google Scholar 

  30. P. Jain, A. Chaudhari, S. Patel, Z. Patel, and D. Patel, Pharm. Methods, 2, 198–202 (2011).

    Article  Google Scholar 

  31. S. K. Vashist and H. J. T. Luong, In: Handbook of Immunoassay Technologies, Ch. 4, Academic Press (2018), pp. 81–95.

  32. M. Cheze and J. M. Gaulier, In: Toxicological Aspects of Drug-Facilitated Crimes, Ed. P. Kintz, Ch. 8, Academic Press (2014), pp. 181–222.

  33. S. Song, K. Gao, R. Niu, J. Wang, J. Zhang, C. Gao, B. Yang, and X. Liao, Mater. Sci. Eng. C. Mater. Biol. Appl., 106, 110–161 (2020)

    Article  Google Scholar 

  34. S. Song, K. Gao, R. Niu., W. Yi, J. Zhang, C. Gao, B. Yang, and X. Liao. J. Mol. Liq., 296, Article ID 111993 (2019).

  35. H. W. Xiang, A. Laesecke, and M. L. Huber, J. Phys. Chem. Ref. Data, 35, 1597–1620 (2006).

    Article  ADS  Google Scholar 

  36. I. Kaur, S. Wakode, and H. Singh, Pharm. Methods, 6, 82–86 (2015).

    Article  Google Scholar 

  37. E. Yeom, Y. J. Kang, and S. J. Lee, Biomicrofluidics, 8, 34–110 (2014).

    Article  Google Scholar 

  38. N. Siddiqui and A. Ahmad, Int. J. Sci. Environ. Technol., 2, 1318–1326 (2013).

    Google Scholar 

  39. A. B. Mandal, S. Gupta, and S. P. Moulik, Indian J. Chem., 24, 670–673 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Nagpal.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 1, p. 134, January–February, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, A., Srivastava, N. & Nagpal, K. Development and Validation of UV Spectrophotometric Method for Determination of Chrysin and Its Solubility Studies. J Appl Spectrosc 89, 150–158 (2022). https://doi.org/10.1007/s10812-022-01338-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01338-0

Keywords

Navigation