Skip to main content

Advertisement

Log in

Optimization of electroosmotic flow to enhance the removal of contaminants from low‑permeable soils

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrokinetic is an effective method for the extraction of contaminants from low-permeable soils. This work examines the influence of Ca+2 ions on the electroosmotic flow and the effect of electric potential, current, and pH variations on the removal of Pb2+, Na+, and Clˉ ions from artificially contaminated soil during vertical electrokinetic experiments. The DC electric field of 1 Vcm−1 was applied across the soil specimen via steel mesh electrodes for 24, 48, and 72 h of the experiment. In this work, the vertical electrokinetic cell was used to avoid the deposition of Na+ and Pb +2 ions near the soil surface after the treatment. making it even less permeable. The results show that the formation of acidic and alkaline environments in soil specimens affects the transport of ionic species by reducing the effect of electromigration and electroosmotic water flow. The enhancement of electroosmosis using Ca+2 ions as an electrolyte increased the extraction efficiency of Pb2+ (i.e., 41%) and Na+ (i.e., 82%) ions instead of the Clˉ (i.e., 69%) ions due to the high electroosmotic flow (i.e., 81 mL) from anode to the cathode. For relatively low electroosmotic flow (i.e., 19 mL), the extraction efficiency of Clˉ ions (i.e., 76%) was higher than that of Pb2+ (i.e., 27%) and Na+ (i.e., 44%) ions. The results demonstrated that the extraction efficiency of ions and energy consumption increased with treatment time and were higher during the first 24 h of the experiments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Butcher K, Wick AF, Desutter T et al (2016) Soil salinity: a threat to global food security. Agron J 108:2189–2200. https://doi.org/10.2134/agronj2016.06.0368

    Article  CAS  Google Scholar 

  2. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445. https://doi.org/10.1016/S1369-5266(03)00085-2

    Article  CAS  PubMed  Google Scholar 

  3. Munns R, Day DA, Fricke W et al (2020) Energy costs of salt tolerance in crop plants. New Phytol 225:1072–1090. https://doi.org/10.1111/nph.15864

    Article  CAS  PubMed  Google Scholar 

  4. Jones BEH, Haynes RJ (2011) Bauxite processing residue: a critical review of its formation, properties, storage, and revegetation. Crit Rev Environ Sci Technol 41:271–315. https://doi.org/10.1080/10643380902800000

    Article  CAS  Google Scholar 

  5. Kim SO, Jeong JY, Lee WC et al (2021) Electrokinetic remediation of heavy metal-contaminated soils: performance comparison between one- and two-dimensional electrode configurations. J Soils Sediments 21:2755–2769. https://doi.org/10.1007/s11368-020-02803-z

    Article  CAS  Google Scholar 

  6. Bessaim MM, Missoum H, Bendani K et al (2020) Effect of processing time on removal of harmful emerging salt pollutants from saline-sodic soil during electrochemical remediation. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.126688

    Article  PubMed  Google Scholar 

  7. Cameselle C, Pena A (2016) Enhanced electromigration and electro-osmosis for the remediation of an agricultural soil contaminated with multiple heavy metals. Process Saf Environ Prot 104:209–217. https://doi.org/10.1016/j.psep.2016.09.002

    Article  CAS  Google Scholar 

  8. Alshawabkeh AN, Sheahan TC, Wu X (2004) Coupling of electrochemical and mechanical processes in soils under DC fields. Mech Mater 36:453–465. https://doi.org/10.1016/S0167-6636(03)00071-1

    Article  Google Scholar 

  9. Cameselle C, Reddy KR (2012) Development and enhancement of electro-osmotic flow for the removal of contaminants from soils. Electrochim Acta 86:10–22. https://doi.org/10.1016/j.electacta.2012.06.121

    Article  CAS  Google Scholar 

  10. Cameselle C (2015) Enhancement of electro-osmotic flow during the electrokinetic treatment of a contaminated soil. Electrochim Acta 181:31–38. https://doi.org/10.1016/j.electacta.2015.02.191

    Article  CAS  Google Scholar 

  11. Lim AE, Lim CY, Lam YC (2016) Electroosmotic flow hysteresis for dissimilar anionic solutions. Anal Chem 88:8064–8073. https://doi.org/10.1021/acs.analchem.6b01536

    Article  CAS  PubMed  Google Scholar 

  12. Sumbarda-Ramos EG, Guerrero-Gutierrez OX, Murillo-Rivera B et al (2010) Electrokinetic treatment for clayed and sandy soils. J Appl Electrochem 40:1255–1261. https://doi.org/10.1007/s10800-010-0097-7

    Article  CAS  Google Scholar 

  13. Yeung AT, Gu YY (2011) A review on techniques to enhance electrochemical remediation of contaminated soils. J Hazard Mater 195:11–29. https://doi.org/10.1016/j.jhazmat.2011.08.047

    Article  CAS  PubMed  Google Scholar 

  14. Wen D, Fu R, Li Q (2021) Removal of inorganic contaminants in soil by electrokinetic remediation technologies: a review. J Hazard Mater 401:123345. https://doi.org/10.1016/j.jhazmat.2020.123345

    Article  CAS  PubMed  Google Scholar 

  15. Li D, Huang T, Liu K (2016) Near-anode focusing phenomenon caused by the coupling effect of early precipitation and backward electromigration in electrokinetic remediation of MSWI fly ashes. Environ Technol (United Kingdom) 37:216–227. https://doi.org/10.1080/09593330.2015.1066873

    Article  CAS  Google Scholar 

  16. Chien SC, Teng FC, Ou CY (2015) Soil improvement of electroosmosis with the chemical treatment using the suitable operation process. Acta Geotech 10:813–820. https://doi.org/10.1007/s11440-014-0319-y

    Article  Google Scholar 

  17. Wen Y, Zhang H, Su H, Ren H (2020) Optimal tracking control for non-zero-sum games of linear discrete-time systems via off-policy reinforcement learning. Optim Control Appl Methods 41:1233–1250. https://doi.org/10.1002/oca.2597

    Article  Google Scholar 

  18. Li G, Guo S, Li S et al (2012) Comparison of approaching and fixed anodes for avoiding the “focusing” effect during electrokinetic remediation of chromium-contaminated soil. Chem Eng J 203:231–238. https://doi.org/10.1016/j.cej.2012.07.008

    Article  CAS  Google Scholar 

  19. Abou-Shady A (2016) Reclaiming salt-affected soils using electro-remediation technology: PCPSS evaluation. Electrochim Acta 190:511–520. https://doi.org/10.1016/j.electacta.2016.01.036

    Article  CAS  Google Scholar 

  20. Estefan G, Sommer R, Ryan J (2013) Methods of Soil , Plant , and Water Analysis : A manual for the West Asia and North. 1–243

  21. Peng J, Ye H, Alshawabkeh AN (2015) Soil improvement by electroosmotic grouting of saline solutions with vacuum drainage at the cathode. Appl Clay Sci 114:53–60. https://doi.org/10.1016/j.clay.2015.05.012

    Article  CAS  Google Scholar 

  22. Ishaq M, Kamran K, Jamil Y, Sarfraz RA (2021) Electric potential and current distribution in contaminated porous building materials under electrokinetic desalination. Mater Struct Constr. https://doi.org/10.1617/s11527-021-01770-2

    Article  Google Scholar 

  23. Beretta AN, Silbermann AV, Paladino L et al (2014) Análisis de textura del suelo con hidrómetro: modificaciones al método de bouyoucus. Cienc e Investig Agrar 41:263–271. https://doi.org/10.4067/S0718-16202014000200013

    Article  Google Scholar 

  24. Bagarello V, Iovino M, Palazzolo E et al (2006) Field and laboratory approaches for determining sodicity effects on saturated soil hydraulic conductivity. Geoderma 130:1–13. https://doi.org/10.1016/j.geoderma.2005.01.004

    Article  CAS  Google Scholar 

  25. Li H, Tan Y, Xie Z et al (2021) Method for measuring the saturated permeability coefficient of compacted bentonite at temperatures exceeding 100 °C. Prog Nucl Energy 141:103958. https://doi.org/10.1016/j.pnucene.2021.103958

    Article  CAS  Google Scholar 

  26. Bensharada M, Telford R, Stern B, Gaffney V (2022) Loss on ignition vs. thermogravimetric analysis: a comparative study to determine organic matter and carbonate content in sediments. J Paleolimnol 67:191–197. https://doi.org/10.1007/s10933-021-00209-6

    Article  Google Scholar 

  27. Zhu S, Zhu D, Wang X (2017) Removal of fluorine from red mud (bauxite residue) by electrokinetics. Electrochim Acta 242:300–306. https://doi.org/10.1016/j.electacta.2017.05.040

    Article  CAS  Google Scholar 

  28. Kamran K, Van Soestbergen M, Huinink HP, Pel L (2012) Inhibition of electrokinetic ion transport in porous materials due to potential drops induced by electrolysis. Electrochim Acta 78:229–235. https://doi.org/10.1016/j.electacta.2012.05.123

    Article  CAS  Google Scholar 

  29. Wada SI, Umegaki Y (2001) Major ion and electrical potential distribution in soil under electrokinetic remediation. Environ Sci Technol 35:2151–2155. https://doi.org/10.1021/es001335j

    Article  CAS  PubMed  Google Scholar 

  30. Raza A, Haidry AA, Shahzad MK et al (2022) Adsorption kinetics and photocatalytic properties of Cu2ZnSnS4@porous g-C3N4 for contaminant removal. Mater Sci Semicond Process 150:106912. https://doi.org/10.1016/j.mssp.2022.106912

    Article  CAS  Google Scholar 

  31. Liu X, Feng B, Tian R et al (2020) Electrical double layer interactions between soil colloidal particles: polarization of water molecule and counterion. Geoderma. 380:114693. https://doi.org/10.1016/j.geoderma.2020.114693

    Article  CAS  Google Scholar 

  32. Zulfiqar W, Iqbal MA, Butt MK (2017) Pb2+ ions mobility perturbation by iron particles during electrokinetic remediation of contaminated soil. Chemosphere 169:257–261. https://doi.org/10.1016/j.chemosphere.2016.11.083

    Article  CAS  PubMed  Google Scholar 

  33. Kim JH, Han SJ, Kim SS, Yang JW (2006) Effect of soil chemical properties on the remediation of phenanthrene-contaminated soil by electrokinetic-Fenton process. Chemosphere 63:1667–1676. https://doi.org/10.1016/j.chemosphere.2005.10.008

    Article  CAS  PubMed  Google Scholar 

  34. Ye WM, Zheng ZJ, Chen B et al (2014) Effects of pH and temperature on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite. Appl Clay Sci 101:192–198. https://doi.org/10.1016/j.clay.2014.08.002

    Article  CAS  Google Scholar 

  35. Zhang L, Kang T, Kang J et al (2020) Effects of electrolyte pH on the electro-osmotic characteristics in anthracite. ACS Omega 5:29257–29264. https://doi.org/10.1021/acsomega.0c04013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moayedi H, Nazir R, Kassim KA, Huat BK (2014) Measurement of the electrokinetic properties of peats treated with chemical solutions. Meas J Int Meas Confed 49:289–295. https://doi.org/10.1016/j.measurement.2013.11.008

    Article  Google Scholar 

  37. Ait Ahmed O, Derriche Z, Kameche M et al (2016) Electro-remediation of lead contaminated kaolinite: an electro-kinetic treatment. Chem Eng Process Process Intensif 100:37–48. https://doi.org/10.1016/j.cep.2015.12.002

    Article  CAS  Google Scholar 

  38. Ottosen LM, Christensen IV (2012) Electrochimica Acta electrokinetic desalination of sandstones for NaCl removal—test of different clay poultices at the electrodes. Electrochim Acta 86:192–202. https://doi.org/10.1016/j.electacta.2012.06.005

    Article  CAS  Google Scholar 

  39. Yu C, Shao Z, Hou H (2017) A functionalized metal-organic framework decorated with O-groups showing excellent performance for lead(II) removal from aqueous solution. Chem Sci 8:7611–7619. https://doi.org/10.1039/c7sc03308g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Acar YB, Alshawabkeh AN (1993) Principles of electrokinetic remediation. Environ Sci Technol 27:2638–2647. https://doi.org/10.1021/es00049a002

    Article  CAS  Google Scholar 

  41. Shu J, Sun X, Liu R et al (2019) Enhanced electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue using pulsed electric field in different enhancement agents. Ecotoxicol Environ Saf 171:523–529. https://doi.org/10.1016/j.ecoenv.2019.01.025

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AAH wrote the manuscript and performed the experiment; KK contributed to supervision and investigation; MI, AA, and MH contributed to review the article and edited final manuscript. All authors have read and agreed to publish the manuscript.

Corresponding authors

Correspondence to Abdul Ahad Hussain or Kashif Kamran.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, A.A., Kamran, K., Ishaq, M. et al. Optimization of electroosmotic flow to enhance the removal of contaminants from low‑permeable soils. J Appl Electrochem 53, 1245–1258 (2023). https://doi.org/10.1007/s10800-023-01845-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01845-8

Keywords

Navigation