Skip to main content

Advertisement

Log in

Self-assembled Prussian blue–polypyrrole nanocomposites for energy storage application

  • Short Communication
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The Prussian blue and polypyrrole nanocomposite (PB–PPy) was synthesised by a facile spontaneous self-assembly (SA) procedure through the layering of multiple sequential absorptions of FeCl3–K3[Fe(CN)6] and pyrrole. The morphology of PB–PPy nanocomposite was rough and irregular, whereas the PB nanocubes (used as experimental control) had a diameter of about 40 nm which were formed using the SA method. The intercalation pseudocapacitive mechanism occurs when potassium ions were inserted to the PB framework. The electrochemical behaviour and areal capacitance of PB–PPy were compared with pristine PB. The “knee frequency” was only present in the Nyquist plot of PB–PPy. The result revealed that the PPy significantly improved the capacitance of pristine PB and this made PB–PPy as a promising candidate for supercapacitors. The specific areal capacitance of PB–PPy was at least ten times higher than pristine PB.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  Google Scholar 

  2. Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45:5925–5950. https://doi.org/10.1039/C5CS00580A

    Article  CAS  PubMed  Google Scholar 

  3. Huggins RA (2017) Review—a new class of high rate, long cycle life, aqueous electrolyte battery electrodes. J Electrochem Soc 164:A5031–A5036. https://doi.org/10.1149/2.0571701jes

    Article  CAS  Google Scholar 

  4. Xu Y, Zheng S, Tang H et al (2017) Prussian blue and its derivatives as electrode materials for electrochemical energy storage. Energy Storage Mater 9:11–30

    Article  Google Scholar 

  5. Zou Y, Wang Q, Xiang C et al (2016) One-pot synthesis of ternary polypyrrole-Prussian-blue-graphene-oxide hybrid composite as electrode material for high-performance supercapacitors. Electrochim Acta 188:126–134. https://doi.org/10.1016/j.electacta.2015.11.123

    Article  CAS  Google Scholar 

  6. Lee PK, Nia PM, Woi PM (2017) Facile self-assembled Prussian blue-polypyrrole nanocomposites on glassy carbon: comparative synthesis methods and its electrocatalytic reduction towards H2O2. Electrochim Acta 246:841–852. https://doi.org/10.1016/j.electacta.2017.06.083

    Article  CAS  Google Scholar 

  7. Ojani R, Hamidi P, Raoof JB (2016) Efficient nonenzymatic hydrogen peroxide sensor in acidic media based on Prussian blue nanoparticles-modified poly(o-phenylenediamine)/glassy carbon electrode. Chin Chem Lett 27:481–486. https://doi.org/10.1016/j.cclet.2015.12.030

    Article  CAS  Google Scholar 

  8. Kong B, Selomulya C, Zheng G, Zhao D (2015) New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications. Chem Soc Rev 44:7997–8018. https://doi.org/10.1039/C5CS00397K

    Article  CAS  PubMed  Google Scholar 

  9. Hostert L, de Alvarenga G, Marchesi LF et al (2016) One-pot sonoelectrodeposition of poly(pyrrole)/Prussian blue nanocomposites: effects of the ultrasound amplitude in the electrode interface and electrocatalytical properties. Electrochim Acta 213:822–830. https://doi.org/10.1016/j.electacta.2016.08.013

    Article  CAS  Google Scholar 

  10. Yue Y, Zhang Z, Binder AJ et al (2015) Hierarchically superstructured Prussian blue analogues: spontaneous assembly synthesis and applications as pseudocapacitive materials. Chemsuschem 8:177–183. https://doi.org/10.1002/cssc.201402520

    Article  CAS  PubMed  Google Scholar 

  11. Koncki R (2002) Chemical sensors and biosensors based on Prussian blues. Crit Rev Anal Chem 32:79–96. https://doi.org/10.1080/10408340290765452

    Article  CAS  Google Scholar 

  12. Zukalová M, Kalbáč M, Kavan L et al (2005) Pseudocapacitive lithium storage in TiO2(B). Chem Mater 17:1248–1255. https://doi.org/10.1021/cm048249t

    Article  CAS  Google Scholar 

  13. Augustyn V, Come J, Lowe MA et al (2013) High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 12:518–522. https://doi.org/10.1038/nmat3601

    Article  CAS  PubMed  Google Scholar 

  14. Park M, Zhang X, Chung M et al (2010) A review of conduction phenomena in Li-ion batteries. J Power Sources 195:7904–7929. https://doi.org/10.1016/j.jpowsour.2010.06.060

    Article  CAS  Google Scholar 

  15. Zhong C, Deng Y, Hu W et al (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539. https://doi.org/10.1039/C5CS00303B

    Article  CAS  Google Scholar 

  16. Conway BE (1999) Electrochem Supercapacitors. Springer, US

    Book  Google Scholar 

  17. Wang Y, Chang Z, Zhang Y et al (2017) CoCO3 from one-step micro-emulsion method as electrode materials for Faradaic capacitors. Sci Rep 7:1–8. https://doi.org/10.1038/s41598-017-02004-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jadhav HS, Pawar SM, Jadhav AH et al (2016) Hierarchical mesoporous 3D flower-like CuCo2O4/NF for high-performance electrochemical energy storage. Sci Rep 6:2–13. https://doi.org/10.1038/srep31120

    Article  CAS  Google Scholar 

  19. Zhang M, Hou C, Halder A et al (2017) Interlocked graphene–Prussian blue hybrid composites enable multifunctional electrochemical applications. Biosens Bioelectron 89:570–577. https://doi.org/10.1016/j.bios.2016.02.044

    Article  CAS  PubMed  Google Scholar 

  20. Lei C, Markoulidis F, Wilson P, Lekakou C (2016) Phenolic carbon cloth-based electric double-layer capacitors with conductive interlayers and graphene coating. J Appl Electrochem 46:251–258. https://doi.org/10.1007/s10800-015-0909-x

    Article  CAS  Google Scholar 

  21. Park JH, Park OO, Shin KH et al (2002) An electrochemical capacitor based on a Ni(OH)2/activated carbon composite electrode. Electrochem Solid State Lett 5:H7. https://doi.org/10.1149/1.1432245

    Article  CAS  Google Scholar 

  22. Xu J, Liao K, Song K et al (2018) Fast in situ synthesis of CoFe layered double hydroxide onto multi-layer graphene for electrochemical capacitors. J Solid State Electrochem 22:1037–1045. https://doi.org/10.1007/s10008-017-3839-1

    Article  CAS  Google Scholar 

  23. Huang L, Chen D, Ding Y et al (2013) Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 13:3135–3139. https://doi.org/10.1021/nl401086t

    Article  CAS  PubMed  Google Scholar 

  24. Lvovich VF (2012) Impedance spectroscopy [electronic resource]: applications to electrochemical and dielectric phenomena. Wiley, New York

    Book  Google Scholar 

Download references

Funding

UMRG Sub-program RP020C-16SUS and Research University Grant ST002-2018 by University of Malaya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Meng Woi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, P.K., Nia, P.M. & Woi, P.M. Self-assembled Prussian blue–polypyrrole nanocomposites for energy storage application. J Appl Electrochem 49, 631–638 (2019). https://doi.org/10.1007/s10800-019-01310-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-019-01310-5

Keywords

Navigation