Skip to main content
Log in

CO2 capture and reduction to liquid fuels in a novel electrochemical setup by using metal-doped conjugated microporous polymers

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

An electrochemical device for the reduction of CO2 back to liquid fuels is here presented. The key of this novel electrocatalytic approach is the design and development of the gas diffusion membrane (GDM), which is obtained by assembling (i) a proton selective membrane (Nafion), (ii) a nanocomposite electrocatalyst based on metal-doped conjugated microporous polymer (CMP) and (iii) a C-based support working as the gas diffusion layer. CMP is a very attractive material able to adsorb CO2 selectively with respect to other gases (such as H2, O2, N2, etc.), also in mild conditions (r.t. and atmospheric pressure). Particularly, tetrakis-phenylethene conjugated microporous polymer (TPE-CMP) was synthesized through Yamamoto homo-coupling reaction. TPE-CMP was modified by depositing noble (Pt) and non-noble (Fe) metal nanoparticles to create the active catalytic sites for the process of CO2 reduction directly on the polymer surface where CO2 is adsorbed. The metal-doped TPE-CMP electrocatalysts were fully characterized by infrared spectroscopy (IR), thermo-gravimetric analysis (TGA) and transmission electron microscopy (TEM). Then, the as-assembled GDM was tested in our homemade semi-continuous three-electrode electrochemical cell working in gas phase at 60 °C, coupled with a cold trap for the accumulation of the liquid products. Results showed the better performances of the metal-doped TPE-CMP in terms of total productivity (C1–C8 oxygenates) with respect to other kinds of materials that do not show high CO2 adsorption capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Centi G, Perathoner S, Passalacqua R, Ampelli C (2011) Solar production of fuels from water and CO2. In: (Eds.) NZMaTNV (ed) Carbon-neutral fuels and energy carriers. Series: green chemistry and chemical engineering. CRC Press (Taylor & Francis group), Boca Raton, FL (US), pp 291–323

  2. Genovese C, Ampelli C, Perathoner S, Centi G (2013) A Gas-phase electrochemical reactor for carbon dioxide reduction back to liquid fuels. Chem Eng Tran 32:289–294. doi:10.3303/CET1332049

    Google Scholar 

  3. Songolzadeh M, Soleimani M, Takht Ravanchi M, Songolzadeh R (2014) Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions. Sci World J 2014:828131. doi:10.1155/2014/828131

    Article  Google Scholar 

  4. Leung DYC, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev 39:426–443. doi:10.1016/j.rser.2014.07.093

    Article  CAS  Google Scholar 

  5. Huck JM, Lin L-C, Berger AH, Shahrak MN, Martin RL, Bhown AS, Haranczyk M, Reuter K, Smit B (2014) Evaluating different classes of porous materials for carbon capture. Energy Environ Sci. doi:10.1039/C4EE02636E

    Google Scholar 

  6. Yang L, Wang H (2014) Recent advances in carbon dioxide capture, fixation, and activation by using n-heterocyclic carbenes. Chem Sus Chem 7(4):962–998. doi:10.1002/cssc.201301131

    Article  CAS  Google Scholar 

  7. Genovese C, Ampelli C, Perathoner S, Centi G (2013) Electrocatalytic conversion of CO2 on carbon nanotube-based electrodes for producing solar fuels. J Catal 308:237–249. doi:10.1016/j.jcat.2013.08.026

    Article  CAS  Google Scholar 

  8. Ampelli C, Centi G, Passalacqua R, Perathoner S (2010) Synthesis of solar fuels by a novel photoelectrocatalytic approach. Energy Environ Sci 3(3):292–301. doi:10.1039/B925470f

    Article  CAS  Google Scholar 

  9. Ampelli C, Genovese C, Perathoner S, Centi G, Errahali M, Gatti G, Marchese L (2014) An electrochemical reactor for the CO2 reduction in gas phase by using conductive polymer based electrocatalysts. Chem Eng Trans 41:13–18. doi:10.3303/CET1441003

    Google Scholar 

  10. Herron JA, Kim J, Upadhye AA, Hubera GW, Maravelias CT (2014) A general framework for the assessment of solar fuel technologies. Energy Environ Sci. doi:10.1039/C4EE01958J

    Google Scholar 

  11. Ampelli C, Genovese C, Passalacqua R, Perathoner S, Centi G (2012) The use of a solar photoelectrochemical reactor for sustainable production of energy. Theor Found Chem Eng 46(6):651–657. doi:10.1134/S0040579512060012

    Article  CAS  Google Scholar 

  12. Ampelli C, Passalacqua R, Perathoner S, Centi G (2011) Development of a TiO2 nanotube array-based photo-reactor for H2 production by water splitting. Chem Eng Trans 24:187–192. doi:10.3303/Cet1124032

    Google Scholar 

  13. Passalacqua R, Ampelli C, Perathoner S, Centi G (2012) Anodically formed TiO2 thin films: evidence for a multiparameter dependent photocurrent-structure relationship. Nanosci Nanotechnol Lett 4(2):142–148. doi:10.1166/nn1.2012.1303

    Article  CAS  Google Scholar 

  14. Errahali M, Gatti G, Tei L, Canti L, Fraccarollo A, Cossi M, Marchese L (2014) Understanding methane adsorption in porous aromatic frameworks: an FTIR, Raman, and theoretical combined study. J Phys Chem C 118(19):10053–10060. doi:10.1021/jp412572e

    Article  CAS  Google Scholar 

  15. Ampelli C, Passalacqua R, Genovese C, Perathoner S, Centi G, Montini T, Gombac V, Fornasiero P (2013) Solar energy and biowaste conversion into H2 on CuOx/TiO2 nanocomposites. Chem Eng Trans 35:583–588. doi:10.3303/CET1335097

    Google Scholar 

  16. Ampelli C, Passalacqua R, Genovese C, Perathoner S, Centi G, Montini T, Gombac V, Jaen JJD, Fornasiero P (2013) H2 production by selective photo-dehydrogenation of ethanol in gas and liquid phase on CuOx/TiO2 nanocomposites. RSC Adv 3(44):21776–21788. doi:10.1039/C3ra22804e

    Article  CAS  Google Scholar 

  17. You H-S, Jin H, Mo Y-H, Park S-E (2013) CO2 adsorption behavior of microwave synthesized zeolite beta. Mater Lett 108:106–109. doi:10.1016/j.matlet.2013.06.088

    Article  CAS  Google Scholar 

  18. Auta M, Hameed BH (2014) Adsorption of carbon dioxide by diethanolamine activated alumina beads in a fixed bed. Chem Eng J 253:350–355. doi:10.1016/j.cej.2014.05.018

    Article  CAS  Google Scholar 

  19. Ye S, Jiang X, Ruan L-W, Liu B, Wang Y-M, Zhu J-F, Qiu L-G (2013) Post-combustion CO2 capture with the HKUST-1 and MIL-101(Cr) metal–organic frameworks: adsorption, separation and regeneration investigations. Microporous Mesoporous Mater 179:191–197. doi:10.1016/j.micromeso.2013.06.007

    Article  CAS  Google Scholar 

  20. Tong M, Yang Q, Xiao Y, Zhong C (2014) Revealing the structure-property relationship of covalent organic frameworks for CO2 capture from postcombustion gas: a multi-scale computational study. Phys Chem Chem Phys 16(29):15189–15198. doi:10.1039/c4cp02047b

    Article  CAS  Google Scholar 

  21. Ben T, Qiu S (2013) Porous aromatic frameworks: synthesis, structure and functions. CrystEngComm 15(1):17–26. doi:10.1039/c2ce25409c

    Article  CAS  Google Scholar 

  22. Fraccarollo A, Canti L, Marchese L, Cossi M (2014) Monte carlo modeling of carbon dioxide adsorption in porous aromatic frameworks. Langmuir 30:4147–4156

    Article  CAS  Google Scholar 

  23. Yang D-A, Cho H-Y, Kim J, Yang S-T, Ahn W-S (2012) CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy Environ Sci 5:6465–6473. doi:10.1039/c1ee02234b

    Article  CAS  Google Scholar 

  24. Liu X, Li H, Zhang Y, Xu B, Sigen A, Xia H, Mu Y (2013) Enhanced carbon dioxide uptake by metalloporphyrin-based microporous covalent triazine framework. Polym Chem 4(8):2445–2448. doi:10.1039/c3py00083d

    Article  CAS  Google Scholar 

  25. Xu Y, Chen L, Guo Z, Nagai A, Jiang D (2011) Light-emitting conjugated polymers with microporous network architecture: interweaving scaffold promotes electronic conjugation, facilitates exciton migration, and improves luminescence. J Am Chem Soc 133(44):17622–17625. doi:10.1021/ja208284t

    Article  CAS  Google Scholar 

  26. Xu Y, Jin S, Xu H, Nagai A, Jiang D (2013) Conjugated microporous polymers: design, synthesis and application. Chem Soc Rev 42(20):8012–8031. doi:10.1039/c3cs60160a

    Article  CAS  Google Scholar 

  27. Xie Y, Wang TT, Liu XH, Zou K, Deng WQ (2013) Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer. Nature Commun 4:1960. doi:10.1038/ncomms2960

    Article  Google Scholar 

  28. Dawson R, Adams DJ, Cooper AI (2011) Chemical tuning of CO2 sorption in robust nanoporous organic polymers. Chem Sci 2:1173–1177. doi:10.1039/c1sc00100k

    Article  CAS  Google Scholar 

  29. Demir-Cakan R, Morcrette M, Nouar F, Davoisne C, Devic T, Gonbeau D, Dominko R, Serre C, Ferey G, Tarascon J-M (2011) Cathode Composites for Li–S batteries via the use of oxygenated porous architectures. J Am Chem Soc 133(40):16154–16160. doi:10.1021/ja2062659

    Article  CAS  Google Scholar 

  30. Genovese C, Ampelli C, Perathoner S, Centi G (2013) Electrocatalytic conversion of CO2 to liquid fuels using nanocarbon-based electrodes. J Energy Chem 22(2):202–213

    Article  CAS  Google Scholar 

  31. Ampelli C, Passalacqua R, Genovese C, Perathoner S, Centi G (2011) A novel photo-electrochemical approach for the chemical recycling of carbon dioxide to fuels. Chem Eng Trans 25:683–688. doi:10.3303/Cet1125114

    Google Scholar 

  32. Ampelli C, Passalacqua R, Perathoner S, Centi G, Su DSS, Weinberg G (2008) Synthesis of TiO2 Thin films: relationship between preparation conditions and nanostructure. Top Catal 50(1–4):133–144. doi:10.1007/s11244-008-9113-0

    Article  CAS  Google Scholar 

  33. Ampelli C, Passalacqua R, Perathoner S, Centi G (2009) Nano-engineered materials for H2 production by water photo-electrolysis. Chem Eng Trans 17:1011–1016. doi:10.3303/Cet0917169

    Google Scholar 

  34. Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012) New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 5(5):7050. doi:10.1039/c2ee21234j

    Article  CAS  Google Scholar 

  35. Ampelli C, Genovese C, Passalacqua R, Perathoner S, Centi G (2014) A gas-phase reactor powered by solar energy and ethanol for H2 production. Appl Therm Eng 70(2):1270–1275. doi:10.1016/j.applthermaleng.2014.04.013

    Article  CAS  Google Scholar 

  36. Kopljar D, Inan A, Vindayer P, Wagner N, Klemm E (2014) Electrochemical reduction of CO2 to formate at high current density using gas diffusion electrodes. J Appl Electrochem 44(10):1107–1116. doi:10.1007/s10800-014-0731-x

    Article  CAS  Google Scholar 

  37. Wang Q, Dong H, Yu H, Yu H (2015) Enhanced performance of gas diffusion electrode for electrochemical reduction of carbon dioxide to formate by adding polytetrafluoroethylene into catalyst layer. J Power Sources 279:1–5. doi:10.1016/j.jpowsour.2014.12.118

    Article  CAS  Google Scholar 

  38. Ampelli C, Perathoner S, Centi G (2015) CO2 utilization: an enabling element to move to a resource and energy-efficient chemical and fuel production. Phil Trans R Soc A 373(20140177):1–35. doi:10.1098/rsta.2014.0177

    CAS  Google Scholar 

  39. Qiao J, Liu Y, Hong F, Zhang J (2014) A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev 43:631–675. doi:10.1039/c3cs60323g

    Article  CAS  Google Scholar 

  40. Wang D, Villa A, Porta F, Su D, Prati L (2006) Single-phase bimetallic system for the selective oxidation of glycerol to glycerate. Chem Commun 18:1956–1958. doi:10.1039/B518069D

    Article  Google Scholar 

  41. Freund H-J, Roberts MW (1996) Surface chemistry of carbon dioxide. Surf Sci Rep 25(8):225–273. doi:10.1016/S0167-5729(96)00007-6

    Article  Google Scholar 

  42. Fastow M, Kozirovski Y, Folman M (1993) IR spectra of CO2 and N2O adsorbed on C60 and other carbon allotropes—a comparative study. J Electron Spectrosc Relat Phenom 64–65(C):843–848. doi:10.1016/0368-2048(93)80158-I

    Article  Google Scholar 

  43. Mawhinney DB, Rossin JA, Gerhart K, Yates JT Jr (1999) Adsorption and reaction of 2-chloroethylethyl sulfide with Al2O3 surfaces. Langmuir 15(14):4789–4795. doi:10.1021/la981440v

    Article  CAS  Google Scholar 

  44. Kazarian SG, Vincent MF, Bright FV, Liotta CL, Eckert CA (1996) Specific intermolecular interaction of carbon dioxide with polymers. J Am Chem Soc 118(7):1729–1736. doi:10.1021/ja950416q

    Article  CAS  Google Scholar 

  45. Matranga C, Chen L, Smith M, Bittner E, Johnson JK, Bockrath B (2003) Trapped CO2 in Carbon Nanotube Bundles. J Phys Chem B 107(47):12930–12941

    Article  CAS  Google Scholar 

  46. Hori Y (2008) Electrochemical CO2 reduction on metal electrodes. In: Constantinos G, Vayenas C, White RE, Gamboa-Aldeco ME (eds) Modern aspects of electrochemistry, vol 42. Springer, New York, pp 89–189. doi:10.1007/978-0-387-49489-0_3

    Chapter  Google Scholar 

  47. Ampelli C, Perathoner S, Centi G (2014) Carbon-based catalysts: opening new scenario to develop next-generation nano-engineered catalytic materials. Chin J Catal 35(6):783–791. doi:10.1016/S1872-2067(14)60139-X

    Article  CAS  Google Scholar 

  48. Gangeri M, Perathoner S, Caudo S, Centi G, Amadou J, Bégin D, Pham-Huu C, Ledoux MJ, Tessonnier JP, Su DS (2009) Fe and Pt carbon nanotubes for the electrocatalytic conversion of carbon dioxide to oxygenates. Catal Today 143(1–2):57–63. doi:10.1016/j.cattod.2008.11.001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Italian Ministry of Education, University and Research (MIUR) for the financial support in the framework of the Project PRIN 2010–2011 (Mechanisms of CO2 activation for the design of new materials for energy and resource efficiency).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Ampelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ampelli, C., Genovese, C., Errahali, M. et al. CO2 capture and reduction to liquid fuels in a novel electrochemical setup by using metal-doped conjugated microporous polymers. J Appl Electrochem 45, 701–713 (2015). https://doi.org/10.1007/s10800-015-0847-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0847-7

Keywords

Navigation