Skip to main content
Log in

Influence of heat treatment and microstructure on the corrosion of magnesium alloy Mg-10Gd-3Y-0.4Zr

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The corrosion of Mg alloy Mg-10Gd-3Y-0.4Zr, in the as-cast (F), solution treated (T4) and aged (T6) conditions, was investigated in 5% NaCl solution by immersion tests and potentiodynamic polarization measurements. The as-cast (F) condition had the highest corrosion rate due to micro-galvanic corrosion of the α-Mg matrix by the eutectic. Solution treatment led to the lowest corrosion rate, attributed to the absence of any second phase and a relatively compact protective surface film. Ageing at 250 °C increased the corrosion rate with increasing ageing time to 193 h attributed to increasing micro-galvanic corrosion acceleration of the Mg matrix by increasing amounts of the precipitates. Ageing for longer periods caused a decrease in the corrosion rate attributed to some barrier effect by a nearly continuous second-phase network. Electrochemical measurements did not give accurate evaluation of the corrosion rate in agreement with the immersion tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rokhlin LL (2003) Magnesium alloys containing rare earth metals. Taylor and Francis, London

    Google Scholar 

  2. Lorimer GW (1986) Proceedings of magnesium technology. Institute of Metals, London

  3. Smola B, Stuliikovai I, Von Buch F, Mordike BL (2002) Mater Sci Eng A 324:113

    Article  Google Scholar 

  4. Vostryi P, Smola B, Stuliikovai I, Von Buch F, Mordike BL (1999) Phys Stat Sol A 175:491

    Article  Google Scholar 

  5. He SM, Zeng XQ, Peng LM, Gao X, Nie JF, Ding WJ (2006) J Alloys Comp 421:309

    Article  CAS  Google Scholar 

  6. Apps PJ, Karimzadeh H, King JF, Lorimer GW (2003) Scr Mater 48:1023

    Article  CAS  Google Scholar 

  7. Nie JF, Muddle BC (2000) Acta Mater 48:1691

    Article  CAS  Google Scholar 

  8. Antion C, Donnadieu P, Perrard F, Deschamps A, Tassin C, Pisch A (2003) Acta Mater 51:5335

    Article  CAS  Google Scholar 

  9. Song G, Atrens A (1999) Adv Eng Mater 1:11

    Article  CAS  Google Scholar 

  10. Song G, Atrens A (2003) Adv Eng Mater 5:837

    Article  CAS  Google Scholar 

  11. Song G, Atrens A (2007) Adv Eng Mater 9:177

    Article  CAS  Google Scholar 

  12. Song G, Atrens A, Dargusch M (1999) Corros Sci 41:249

    Article  CAS  Google Scholar 

  13. Zhao MC, Liu M, Song G, Atrens A (2008) Corros Sci 50:1939

    Article  CAS  Google Scholar 

  14. Zhao MC, Liu M, Song G, Atrens A (2008) Adv Eng Mater 10:93

    Article  CAS  Google Scholar 

  15. Winzer N, Atrens A, Song G, Ghali E, Dietzel W, Kainer KU, Hort N, Blawert C (2005) Adv Eng Mater 7:659

    Article  CAS  Google Scholar 

  16. Kannan MB, Dietzel W, Blawert C, Atrens A, Lyon P (2008) Mater Sci Eng A 480:529

    Article  CAS  Google Scholar 

  17. Aung NN, Zhou W (2002) J Appl Electrochem 32:1397

    Article  CAS  Google Scholar 

  18. Beldijoudi T, Fiaud C, Robbiola L (1993) Corrosion 8:738

    Article  Google Scholar 

  19. Hsiao HY, Tsai WT (2005) J Mater Res 20:2763

    Article  CAS  Google Scholar 

  20. Song G, Bowles AL, John DH (2004) Mater Sci Eng A 366:74

    Article  CAS  Google Scholar 

  21. Ambat R, Aung NN, Zhou W (2000) Corros Sci 42:1433

    Article  CAS  Google Scholar 

  22. Zhao MC, Liu M, Song G, Atrens A (2008) Corros Sci 50:3168

    Article  CAS  Google Scholar 

  23. Zhao MC, Liu M, Song G, Atrens A (2008) Adv Eng Mater 10:104

    Article  CAS  Google Scholar 

  24. ASM International (1987) Metals handbook. ASM International, Materials Park

  25. Uhlig HH, Revie RW (1985) Corrosion and corrosion control. Wiley, New York

    Google Scholar 

  26. Song G, Atrens A, John D (2001) Magnesium technology. Hryn, New Orleans

    Google Scholar 

  27. Chang JW, Guo XW, Fu PH, Peng LM, Ding WJ (2007) Electrochim Acta 52:3160

    Article  CAS  Google Scholar 

  28. Guo XW, Chang JW, He SM, Ding WJ, Wang X (2007) Electrochim Acta 52:2570

    Article  CAS  Google Scholar 

  29. Scharf C, Ditze A, Shkurankov A, Morales E, Blawert C, Dietzel W, Kainer KU (2005) Adv Eng Mater 7:1134

    Article  CAS  Google Scholar 

  30. Jia JX, Atrens A, Song G, Muster T (2005) Mater Corros 56:468

    Article  CAS  Google Scholar 

  31. Mansfeld F (1971) Corrosion 27:436

    CAS  Google Scholar 

  32. Krishnamurthy S, Khobaib M, Robertson E, Froes FH (1988) Mater Sci Eng 99:507

    Article  CAS  Google Scholar 

  33. Kiryuu M, Okumura H, Kamado S, Kojima Y, Ninomiya R, Nakatsugawa I (1996) J Jpn Inst Light Met 46:39

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Postdoctoral foundation of China (No. 20080430657), Program of Shanghai Subject Chief Scientist of China (No. 08XD14020) and National Basic Research Program of China (No. 2007CB613701). The authors would like to thank Dr. Yi-jian Lai of the Center of Analysis and Measurement of Shanghai Jiao Tong University for his help in observation of the corrosion products with Field Emission Scanning Electron Microscope (FE-SEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Wei Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, LM., Chang, JW., Guo, XW. et al. Influence of heat treatment and microstructure on the corrosion of magnesium alloy Mg-10Gd-3Y-0.4Zr. J Appl Electrochem 39, 913–920 (2009). https://doi.org/10.1007/s10800-008-9739-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9739-4

Keywords

Navigation