Skip to main content
Log in

Methanol tolerant oxygen-reduction activity of carbon supported platinum–bismuth bimetallic nanoparticles

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The oxygen reduction activity and methanol tolerance of Pt–Bi/C electrocatalysts were studied using electrochemical voltammetric techniques including rotating ring-disk electrode. The Pt–Bi/C catalyst was prepared via a polyol method and subjected to heat treatment to increase the degree of alloying. X-ray diffraction studies revealed the unalloyed character of the as-prepared catalyst and alloy formation upon heat treatment. The electrochemical behaviour of both catalysts showed different behaviour in dilute acid electrolytes, namely sulphuric and perchloric acids. In both electrolytes, the oxygen reduction reaction was found to occur via the four-electron process revealing that the mechanism of oxygen reduction is unaltered even in the presence of excess of methanol. Pt–Bi/C catalyst material showed dramatically different properties and reactivity with respect to oxygen reduction activity and methanol tolerance in perchloric and sulphuric acids. The onset potential for oxygen reduction reaction (ORR) significantly shifted by about 100 mV to more negative values and at the same time the current density was significantly enhanced. This type of non-ideal methanol-tolerant behaviour among Pt bimetallics and a “trade off” is common with all the known so-called methanol tolerant combinations of Pt. In general, the Pt–Bi surface appeared to have a negligibly lesser sensitivity towards methanol activity compared to pure platinum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arico AS, Srinivasan S, Antonucci V (2001) Fuel Cells 1:133

    Article  CAS  Google Scholar 

  2. Baranton S, Coutanceau C, Roux C, Hahn F, Leger J-M (2005) J Electroanal Chem 577:223

    Article  CAS  Google Scholar 

  3. Lu Y, Reddy RG (2007) Electrochim Acta 52:2562

    Article  CAS  Google Scholar 

  4. Chu D, Jiang R (2002) Solid State Ionics 148:591

    Article  CAS  Google Scholar 

  5. Wang X, Waje M, Yan Y (2004) J Electrochem Soc 151:A2183

    Article  CAS  Google Scholar 

  6. Reeve RW, Christensen PA, Hamnett A, Haydock SA, Roy SC (1998) J Electrochem Soc 145:3463

    Article  CAS  Google Scholar 

  7. Schmidt TJ, Paulus UA, Gasteiger HA, Vante NA, Behm RJ (2000) J Electrochem Soc 147:2620

    Article  CAS  Google Scholar 

  8. Ozenler SS, Kadirgan FJ (2006) J Power Sources 154:364

    Article  Google Scholar 

  9. Papageorgopoulos DC, Liu F, Conrad O (2007) Electrochim Acta 53:1037

    Article  CAS  Google Scholar 

  10. Raghuveer V, Ferreira PJ, Manthiram A (2006) Electrochem Commun 8:807

    Article  CAS  Google Scholar 

  11. Fernandez JL, Raghuveer V, Manthiram A, Bard AJ (2006) J Am Chem Soc 127:13100

    Article  Google Scholar 

  12. Low Pt Loading Fuel Cell Electrocatalysts, DOE Hydrogen Program FY (2005) Progress report pp 828–832

  13. Wang W, Zheng D, Du C, Zou Z, Zhang X, Xia B, Yang H, Akins DL (2007) J Power Sources 167:243

    Article  CAS  Google Scholar 

  14. Zhang L, Lee K, Zhang J (2007) Electrochim Acta 52:3088

    Article  CAS  Google Scholar 

  15. Mustain WE, Kepler K, Prakash J (2006) Electrochem Commun 8:406

    Article  CAS  Google Scholar 

  16. Tarasevich MR, Chalykh AE, Bogdanovskaya VA, Kuznetsova LN, Kapustina NA, Efremov BN, Ehrenburg MR, Reznikova LA (2006) Electrochim Acta 51:4455

    Article  CAS  Google Scholar 

  17. Shao MH, Huang T, Liu P, Zhang J, Sasaki K, Vukmirovic MB, Adzic RR (2006) Langmuir 22:10409

    Article  CAS  Google Scholar 

  18. Shukla AK, Raman RK, Choudhury NA, Priolkar KR, Sarode PR, Emura S, Kumashiro R (2004) J Electroanal Chem 563:181

    Article  CAS  Google Scholar 

  19. Yuan W, Scott K, Cheng H (2006) J Power Sources 163:323

    Article  CAS  Google Scholar 

  20. Paffett MT, Beery JG, Gottesfeld S (1988) J Electrochem Soc 135:1431

    Article  CAS  Google Scholar 

  21. Salgado JRC, Antolini E, Gonzalez ER (2005) Appl Catal B Environ 57:283

    Article  CAS  Google Scholar 

  22. Beard BC, Ross PN (1990) J Electrochem Soc 137:3368

    Article  CAS  Google Scholar 

  23. Toda T, Igarashi H, Watanabe M (1999) J Electroanal Chem 460:258

    Article  CAS  Google Scholar 

  24. Neergat N, Shukla AK, Gandhi KS (2001) J Appl Electrochem 31:373

    Article  CAS  Google Scholar 

  25. Koffi RC, Coutanceau C, Garnier E, Leger J-M, Lamy C (2005) Electrochim Acta 50:4117

    Article  CAS  Google Scholar 

  26. Yang H, Coutanceau C, Leger J-M, Vante NA, Lamy C (2005) J Electroanal Chem 576:305

    Article  CAS  Google Scholar 

  27. Beck NK, Steiger B, Scherer GG, Wokaun A (2006) Fuel cells 6:26

    Article  CAS  Google Scholar 

  28. Xia D, Chen G, Wang Z, Zhang J, Hui S, Ghosh D, Wang H (2006) Chem Mater 18:5746

    Article  CAS  Google Scholar 

  29. Roychowdhury C, Matsumoto F, Zeldovich VB, Warren SC, Mutolo PF, Ballesteros M, Wiesner U, Abruna HD, DiSalvo FJ (2006) Chem Mater 18:3365

    Article  CAS  Google Scholar 

  30. Yang H, Vante NA, Leger J-M, Lamy C (2004) J Phys Chem B 108:1938

    Article  CAS  Google Scholar 

  31. Campbell SA, Parsons R (1992) J Chem Soc Faraday Trans 88:833

    Article  CAS  Google Scholar 

  32. Schmidt TJ, Stamenkovic VR, Lucas CA, Markovic NM, Ross PN Jr (2001) Phys Chem Chem Phys 3:3879

    Article  CAS  Google Scholar 

  33. Roychowdhury C, Matsumoto F, Mutolo PF, Abruna HD, DiSalvo FJ (2005) Chem Mater 17:5871

    Article  CAS  Google Scholar 

  34. Daniele S, Bergamin S (2007) Electrochem Commun 9:1388

    Article  CAS  Google Scholar 

  35. Casado-Rivera E, Gal Z, Angelo ACD, Lind C, DiSalvo FJ, Abruna HD (2003) Chem Phys Chem 4:193

    CAS  Google Scholar 

  36. Schmidt TJ, Behm RJ, Grgur BN, Markovic NM, Ross PN Jr (2000) Langmuir 16:8159

    Article  CAS  Google Scholar 

  37. Smith SPE, Ben-Dor KF, Abruna HD (1999) Langmuir 15:7325

    Article  CAS  Google Scholar 

  38. www.abruna.chem.cornell.edu/chem629/lectures/lecture24.pdf

  39. Do J-S, Chen Y-T, Lee M-H (2007) J Power Sources 172:623

    Article  CAS  Google Scholar 

  40. Remona AM, Phani KLN (2007) Chem Mater 19:1529

    Article  CAS  Google Scholar 

  41. Xia D, Chen G, Wang Z, Zhang J, Hui S, Ghosh D, Wang H (2007) Chem Mater 19:1530

    Article  CAS  Google Scholar 

  42. Silvert PY, Vijayakrishnan V, Vibert P, Herrera-Urbina R, Elhsissen KT (1996) Nanostruc Mater 7:611

    Article  CAS  Google Scholar 

  43. Lee J, Strasser P, Eiswirth M, Ertl G (2001) Electrochim Acta 47:501

    Article  CAS  Google Scholar 

  44. Uhm S, Yun Y, Tak Y, Lee J (2005) Electrochem Commun 7:1375

    Article  CAS  Google Scholar 

  45. Volpe D, Casado-Rivera E, Alden L, Lind C, Hagerdon K, Downie C, Korzeniewski C, DiSalvo FJ, Abruna HD (2004) J Electrochem Soc 151:A971

    Article  CAS  Google Scholar 

  46. Casado-Rivera E, Volpe DJ, Alden L, Lind C, Downie C, Va´zquez-Alvarez T, Angelo ACD, DiSalvo FJ, Abruna HD (2004) J Am Chem Soc 126:4043

    Article  CAS  Google Scholar 

  47. Jarvi TD, Stuve EM (1998) In Lipkowski J, Ross PN (eds) Electrocatalysis. Wiley-VCH, p 112

  48. Li WS, Long XM, Yan JH, Nan JM, Chen HY, Wu YM (2006) J Power Sources 158:1096

    Article  CAS  Google Scholar 

  49. Stamenkovic V, Schmidt TJ, Ross PN, Markovic NM (2002) J Phys Chem B 106:11970

    Article  CAS  Google Scholar 

  50. Mathiyarasu J, Phani KLN (2007) J Electrochem Soc 154:B11005

    Article  Google Scholar 

  51. Bard AJ, Faulkner LR (2001) Electrochemical methods, 2nd edn. John Wiley & Sons, Inc, NY

    Google Scholar 

  52. Ye H, Crooks RM (2007) J Am Chem Soc 129:3627

    Article  CAS  Google Scholar 

  53. Demarconnay L, Coutanceau C, Leger J-M (2008) Electrochim Acta 53:3232

    Article  CAS  Google Scholar 

  54. Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Markovic NM, Ross PN (2002) Electrochimica Acta 47:3787

    Article  CAS  Google Scholar 

  55. Adzic R (1998) In Lipkowski J, Ross PN (eds) Electrocatalysis. Wiley-VCH, p 210

  56. Faguy PW, Marinkovic NS, Adzic RR (1996) Langmuir 12:243

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Science & Technology, New Delhi for financial assistance [SR/S1/PC-37/2004] and Professor A. K. Shukla, Director, CECRI for his encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mathiyarasu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeyabharathi, C., Mathiyarasu, J. & Phani, K.L.N. Methanol tolerant oxygen-reduction activity of carbon supported platinum–bismuth bimetallic nanoparticles. J Appl Electrochem 39, 45–53 (2009). https://doi.org/10.1007/s10800-008-9638-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9638-8

Keywords

Navigation