Skip to main content

Advertisement

Log in

Electrochemical reduction of dilute chromate solutions on carbon felt electrodes

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Carbon felt is a potential material for electrochemical reduction of chromates. Very dilute solutions may be efficiently treated due to its large specific surface area and high porosity. In this work, the up-scaling of this technology is investigated using a new type of separated cell and once-through flow of industrial rinse water. A significant enhancement of the process is obtained due to copper deposition during long-term operation. The co-deposition and re-solution of copper occurs depending on the inlet chromate concentration. When previously deposited copper is present a current-free reduction of chromate takes place resulting in current efficiencies apparently above 100%. Very high space time yields are obtained even for effluents at low concentration and optimised conditions (high flow rates and pH 2). The economic feasibility of the technology is also considered. Continuous, single-pass operation results in lower energy requirements than batch processing. The economic potential of the process is also evaluated in comparison with chemical detoxification of chromate. The operating costs for the electrochemical treatment of very dilute effluents on a carbon felt electrode are 30% lower than for the chemical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kolthoff I.M., Shams El Din A.M. (1956). J. Phys. Chem. 60(11): 1564

    Article  CAS  Google Scholar 

  2. Robertson P.M., Schwager F., Ibl N. (1975). J. Electroanal. Chem. 65(2): 883

    Article  CAS  Google Scholar 

  3. Chaudhary A.J., Goswami N.C., Grimes S.M. (2003). J. Chem. Tech. & Biotech. 78(8): 877

    Article  CAS  Google Scholar 

  4. Ibl N., Frei A.M. (1964). Galvanotech. & Oberflächenschutz 5(6): 117 (in German)

    CAS  Google Scholar 

  5. Kimmerl P., Schade H., Blatt W., Schneider L. (1994). Galvanotech. 85(12): 4131 (in German)

    CAS  Google Scholar 

  6. Wijnbelt E.C.W., Janssen L.J.J. (1994). J. Appl. Electrochem. 24: 1028

    Article  CAS  Google Scholar 

  7. Njau K.N., Janssen L.J.J. (1999). J. Appl. Electrochem. 29: 411

    Article  CAS  Google Scholar 

  8. S. Reussard, J.F. Benezech and G. Lacoste, Removal of hexavalent chromium converting to chromium hydroxide by treatment in an electrochemical reactor, in “Electrochemical Engineering and the environment 1992” (1992) 97

  9. Langefeld E. (1992). Galvanotech. 83(11): 3859

    CAS  Google Scholar 

  10. Dziewinski J., Marczak S., Nuttall E., Purdy G., Smith W., Taylor J., Zhou C. (1998). Waste Manag. 18: 257

    Article  CAS  Google Scholar 

  11. Kongsricharoern N., Polprasert C. (1995). Wat. sci. & techn. 31(9): 109

    Article  CAS  Google Scholar 

  12. Kongsricharoern N., Polprasert C. (1996). Wat. sci. tech. 34(9): 109–116

    Article  CAS  Google Scholar 

  13. Barrera-Díaz C., Palomar-Pardave M., Romero-Romo M., Martínez S. (2003). J. Appl. Electrochem. 33: 61

    Article  Google Scholar 

  14. Golub D., Oren Y. (1989). J. Appl. Electrochem. 19: 311

    Article  CAS  Google Scholar 

  15. Abda M., Gavra Z., Oren Y. (1991). J. Appl. Electrochem. 21: 734

    Article  CAS  Google Scholar 

  16. Roberts E.P.L., Yu H. (2002). J. Appl. Electrochem. 32: 1091–1099

    Article  CAS  Google Scholar 

  17. Varenzov V.K. (2002). Galvanotech. obrab. poverchnosti (Russia) 10(1): 29 (in Russian)

    Google Scholar 

  18. Vilar E.O., Cavalcanti E.B., Carvalho H.R., Sousa F.B. (2003). Braz. J. Chem. Engin. 20(3): 291

    CAS  Google Scholar 

  19. González-García J., Bonete P., Expósito E., Montiel V., Aldaz A., Torregrosa-Maciá R. (1999). J. Mat. Chem. 9(2): 419

    Article  Google Scholar 

  20. I.M. Dalrymple, S.J.G. and M. Hendou, The Recovery and Recycling of Cr(VI) from Dilute Waste Solutions. Canmet/Cari/European Commission Joint Workshop on “Environmental Technologies for a Sustainable Production and Consumption” (Vancouver, Canada, 2003).

  21. F. Walsh, A first course in electrochemical engineering, the Electrochemical Consultancy (1993).

  22. Daniel-Bek V.S. (1948). J. Phys. Chem. (UdSSR) 22(6): 697 (in Russian)

    CAS  Google Scholar 

  23. Varenzov V.K. (1988) Use of voluminous porous flow-through electrodes for increased performance of electrochemical processes in hydrometallurgy, in “Increasing performance of electrochemical processes. Collection of scientific studies”. In: Tomilov A.P. (eds) Academy of Science of UdSSR Institute for Electrochemistry “AN Frunkin”. Nauka, Moscow, p. 94 (in Russian)

    Google Scholar 

  24. F. Walsh, Electrode Potential and Current Density Distribution, in ‘A first course in electrochemical engineering’. The Electrochemical Consultancy (1993) 235

  25. Simmrock K.H. (1968). Chem. Ingen. Techn. 40: 875 (in German)

    Article  CAS  Google Scholar 

  26. Kreysa G. (1978). Chem.-Ing.-Tech. 50(5): 332 (in German)

    Article  CAS  Google Scholar 

  27. Wendt H., Kreysa G. (1999) Electrochemical Engineering: science and technology in chemical and other industries. Heidelberg, Springer-Verlag

    Google Scholar 

  28. Podlaha E.J., Fenton J.M. (1995). J. Appl. Electrochem. 25: 299

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank FuMA-Tech GmbH for financial support, Jörg Balster for making the SEM photographs, Hartchrom GmbH, Karlsruhe, Germany for support during pilot experiments and Dr. Norbert Berg (SGL TECHNOLOGIES GmbH, Meitingen, Germany) for the carbon felt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios F. Stamatialis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frenzel, I., Holdik, H., Barmashenko, V. et al. Electrochemical reduction of dilute chromate solutions on carbon felt electrodes. J Appl Electrochem 36, 323–332 (2006). https://doi.org/10.1007/s10800-005-9074-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-9074-y

Keywords

Navigation