Skip to main content
Log in

Mechanism of degradation of nitrilotriacetic acid by heterogeneous photocatalysis over TiO2 and platinized TiO2

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

TiO2-heterogeneous photocatalysis of nitrilotriacetic acid (NTA) at pH 2.5 was studied to establish the kinetic regime and the reaction mechanism. Pure Degussa P-25 and Hombikat UV100 commercial samples were compared. A Langmuirian behavior was observed over P-25. Platinization of the Hombikat sample (0.5 wt.%) caused an important increase on the photocatalytic rate with a change in the kinetics from zero order in the pure precursors to first order in the platinized sample. The nature of the intermediates and their evolution with time were compared on all systems. Glycine, iminodiacetic and oxamic acids have been identified in different proportions, together with ammonium and glycolic acid, depending on the catalyst used. The rapid depletion of NTA was not accompanied by a corresponding total organic carbon (TOC) reduction, but 84% of TOC decrease was obtained on P25 after 24 h, a very reasonable result for refractory compounds. A detailed mechanism is proposed for the photocatalytic reaction, suggested to be the same over the three catalysts here tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Crosbie A. Lodi J.H. McB Miller G.G. Skellern (2003) J. Pharmac. Biomedical Anal 33 435 Occurrence Handle1:CAS:528:DC%2BD3sXnvVertLs%3D

    CAS  Google Scholar 

  2. G. Anderegg (1986) Inorg. Chim. Acta 121 229 Occurrence Handle10.1016/S0020-1693(00)84525-9 Occurrence Handle1:CAS:528:DyaL2sXntlyitg%3D%3D

    Article  CAS  Google Scholar 

  3. V.E. White C.J. Knowles (2003) Int. Biodeterior. Biodegrad 52 143 Occurrence Handle1:CAS:528:DC%2BD3sXotVCgsrw%3D

    CAS  Google Scholar 

  4. M. Sellers, Central Electricity Generating Board Report no. RD/B/N4429 (1979).

  5. M. Sellers (1983) Radiat. Phys. Chem 21 295 Occurrence Handle1:CAS:528:DyaL3sXhs1ymtr8%3D

    CAS  Google Scholar 

  6. F Muñoz C. von Sonntag (2000) J. Chem. Soc., Perkin Trans 2 2029

    Google Scholar 

  7. R.J. Shimp E.V. Lapsins R.M. Ventullo (1994) Environ. Toxicol. Chem 13 205 Occurrence Handle1:CAS:528:DyaK2cXhsVeju7Y%3D

    CAS  Google Scholar 

  8. T. Egli (2001) J. Bioscience Bioeng 92 89 Occurrence Handle1:CAS:528:DC%2BD3MXnslOrsLw%3D

    CAS  Google Scholar 

  9. A.C. Alder H. Siegrist W. Gujer W. Giger (1990) Water Res 24 733 Occurrence Handle10.1016/0043-1354(90)90029-6 Occurrence Handle1:CAS:528:DyaK3cXkvVCitbc%3D

    Article  CAS  Google Scholar 

  10. R.J. Larson G.G. Clinckemaillie L. Van Belle (1981) Water Res 15 615 Occurrence Handle1:CAS:528:DyaL3MXkslCkur8%3D

    CAS  Google Scholar 

  11. M. Sörensen F.H. Frimmel (1995) Z. Naturforsch 50b 1845

    Google Scholar 

  12. K. Sahul B.K. Sharma (1987) J. Radioanal. Nucl. Chem 109 321 Occurrence Handle1:CAS:528:DyaL2sXktlSqu7k%3D

    CAS  Google Scholar 

  13. K. Sahul B.K. Sharma (1987) Appl. Radiat. Isot 38 985 Occurrence Handle1:CAS:528:DyaL2sXmt1Gkt70%3D

    CAS  Google Scholar 

  14. O. Abida, C. Emilio, N. Quici, R. Gettar, M. Litter, G. Mailhot and M. Bolte in A. Vogelpohl, S.U. Geißen, B. Kragert and M. Sievers (Eds.), ‘Oxidation Technologies for Water and Wastewater Treatment III’, Water Sci. Technol. 49 (2004) 123–128.

  15. S.L. Andrianirinaharivelo J.F. Pilichowski M. Bolte (1993) Trans. Met. Chem 18 37 Occurrence Handle10.1007/BF00136046 Occurrence Handle1:CAS:528:DyaK3sXhsl2rsL0%3D

    Article  CAS  Google Scholar 

  16. R.J. Stolzberg D.N. Hume (1975) Environ. Sci. Technol 9 654 Occurrence Handle10.1021/es60105a001 Occurrence Handle1:CAS:528:DyaE2MXks12jtrk%3D

    Article  CAS  Google Scholar 

  17. C.A. Emilio, J.F. Magallanes, M.I. Litter, The 11th International Conference on Surface and Colloid Science, Iguassu Falls, Brazil, 15–19 September 2003.

  18. U. Siemon D. Bahnemann J.J. Testa D. Rodríguez N. Bruno M.I. Litter (2002) J. Photochem. Photobiol. A: Chem 148 247 Occurrence Handle10.1016/S1010-6030(02)00050-3 Occurrence Handle1:CAS:528:DC%2BD38Xktlaqu7Y%3D

    Article  CAS  Google Scholar 

  19. D. Hufschmidt D. Bahnemann J.J. Testa C.A. Emilio M.I. Litter (2002) J. Photochem. Photobiol. A: Chem 148 225 Occurrence Handle10.1016/S1010-6030(02)00048-5

    Article  Google Scholar 

  20. C.A. Emilio J.J. Testa D. Hufschmidt G. Colón J.A. Navío D.W. Bahnemann M.I. Litter (2004) J. Ind. Eng. Chem 10 129 Occurrence Handle1:CAS:528:DC%2BD2cXpsVWlsQ%3D%3D

    CAS  Google Scholar 

  21. C.G. Hatchard C.A. Parker (1956) Proc. Roy. Soc. (London) A 235 518

    Google Scholar 

  22. A.E. Martell R.M. Smith (1974) Critical Stability Constants NumberInSeriesVol. 1 Plenum Press New York and London 139

    Google Scholar 

  23. P.A. Babay C.A. Emilio R.E. Ferreyra E.A. Gautier R.T. Gettar M.I. Litter (2001) Int. J. Photoenergy 3 193 Occurrence Handle1:CAS:528:DC%2BD3MXpt12qsro%3D

    CAS  Google Scholar 

  24. R. Rodríguez M.A. Blesa A.E. Regazzoni (1996) J. Colloid Interface Sci 177 122 Occurrence Handle10.1006/jcis.1996.0012

    Article  Google Scholar 

  25. E.-M. Shin R. Senthruchelvan J. Muñoz S. Basak K. Rajeshwar (1996) J. Electrochem. Soc 143 1562 Occurrence Handle1:CAS:528:DyaK28XjtFSjt7w%3D

    CAS  Google Scholar 

  26. P.A. Babay, C.A. Emilio, R.E. Ferreyra, E.A. Gautier, R.T. Gettar and M.I. Litter in A. Vogelpohl, S.U. Geissen, B. Kragert and M. Sievers (Eds.), ‘Oxidation technologies for water and wastewater treatment (II)’ Water Sci. Technol. 44 (2001) 179–185.

    Google Scholar 

  27. Y. Li F. Wasgestian (1998) J. Photochem. Photobiol. A: Chem 112 255 Occurrence Handle10.1016/S1010-6030(97)00293-1 Occurrence Handle1:CAS:528:DyaK1cXhtlaqtro%3D

    Article  CAS  Google Scholar 

  28. M.I. Litter (1999) Appl. Catal. B: Environ 23 89 Occurrence Handle10.1016/S0926-3373(99)00069-7 Occurrence Handle1:CAS:528:DyaK1MXmsFahs7k%3D

    Article  CAS  Google Scholar 

  29. P. Neta M. Simic E. Hayon (1970) J. Phys. Chem 74 1214 Occurrence Handle1:CAS:528:DyaE3cXhtVWjtbg%3D

    CAS  Google Scholar 

  30. J. Lati and D. Meyerstein, J. Chem. Soc. Daltons Trans. Vol. 1 (1978) 1105.

  31. G.K.C. Low S.R. McEvoy R.W. Matthews (1991) Environ. Sci. Technol 25 460 Occurrence Handle10.1021/es00015a013 Occurrence Handle1:CAS:528:DyaK3MXovVansg%3D%3D

    Article  CAS  Google Scholar 

  32. N. Quici, M.E. Morgada, G. Piperata, P. Babay, R.T. Gettar and M.I. Litter, Catal. Today, accepted.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta I. Litter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emilio, C.A., Gettar, R. & Litter, M.I. Mechanism of degradation of nitrilotriacetic acid by heterogeneous photocatalysis over TiO2 and platinized TiO2 . J Appl Electrochem 35, 733–740 (2005). https://doi.org/10.1007/s10800-005-1381-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-1381-9

Keywords:

Navigation