Skip to main content

Advertisement

Log in

Corneal biomechanics and their association with severity of lens dislocation in Marfan syndrome

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate corneal biomechanical properties and its associations with the severity of lens dislocation in patients with Marfan syndrome.

Methods

A total of 30 patients with Marfan syndrome and 30 age-, sex- and axial length (AL)—matched controls were recruited. Corneal biomechanical parameters of both groups were measured by CorVis ST and were compared between groups. Potential associations between corneal biomechanical parameters and severity of lens dislocation were also investigated.

Results

Lower applanation 1 velocity (A1V) (0.13 ± 0.004 vs. 0.15 ± 0.003, P = 0.016), shorter applanation 2 time (A2T)(22.64 ± 0.11 vs. 22.94 ± 0.11, P = 0.013), longer peak distance (PD) (5.03 ± 0.07 vs. 4.81 ± 0.05, P = 0.008), longer radius (R) of highest concavity (7.44 ± 0.16 vs. 6.93 ± 0.14, P = 0.012), greater Ambrosio relational thickness horizontal (ARTh) (603 ± 20 vs. 498 ± 12, P < 0.001), and integrated radius (IR) (8.32 ± 0.25 vs. 8.95 ± 0.21, P = 0.033) were detected among Marfan eyes compared with controls (all P < 0.05). Marfan individuals with more severe lens dislocation tended to have increased stiffness parameter as longer A1T, slower A1V, shorter A2T, slower application 2 velocity (A2V), smaller PD and smaller Distance Amplitude (DA) (P < 0.05).

Conclusion

Marfan patients were detected to have increased corneal stiffness compared with normal subjects. Corneal biomechanical parameters were significantly associated with the severity of lens dislocation in Marfan patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data are available upon reasonable request. Data are available upon reasonable request to email jingm@mail2.sysu.edu.cn.

References

  1. Ali N, Patel D, Mcghee C (2014) Biomechanical responses of healthy and keratoconic corneas measured using a noncontact scheimpflug-based tonometer. Invest Ophthalmol Vis Sci 55:3651–3659

    Article  PubMed  Google Scholar 

  2. Ashworth J, Kielty C, Mcleod D (2000) Fibrillin and the eye. Br J Ophthalmol 84:1312–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beene LC, Traboulsi EI, Seven I, Ford MR, Sinha Roy A, Butler RS, Dupps WJ Jr (2016) Corneal deformation response and ocular geometry: a noninvasive diagnostic strategy in Marfan syndrome. Am J Ophthalmol 161:56-64.e51

    Article  PubMed  Google Scholar 

  4. Beighton P, De Paepe A, Danks D, Finidori G, Gedde-Dahl T, Goodman R, Hall J, Hollister D, Horton W, Mckusick V (1988) International nosology of heritable disorders of connective tissue, Berlin, 1986. Am J Med Genet 29:581–594

    Article  CAS  PubMed  Google Scholar 

  5. Cao Q, Xiao B, Jin G, Lin J, Wang Y, Young C, Lin J, Zhou Y, Zhang B, Cao M, Wu K, Zheng D (2019) Expression of transforming growth factor β and matrix metalloproteinases in the aqueous humor of patients with congenital ectopia lentis. Mol Med Rep 20:559–566

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen T, Chen J, Jin G, Zhang M, Chen Z, Zheng D, Jiang Y (2021) Clinical ocular diagnostic model of Marfan syndrome in patients with congenital ectopia lentis by pentacam AXL system. Transl Vis Sci Technol 10:3

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chu B (2006) Weill-Marchesani syndrome and secondary glaucoma associated with ectopia lentis. Clin Exp Optom 89:95–99

    Article  PubMed  Google Scholar 

  8. Congdon N, Broman A, Bandeen-Roche K, Grover D, Quigley H (2006) Central corneal thickness and corneal hysteresis associated with glaucoma damage. Am J Ophthalmol 141:868–875

    Article  PubMed  Google Scholar 

  9. Faivre L, Collod-Beroud G, Adès L, Arbustini E, Child A, Callewaert B, Loeys B, Binquet C, Gautier E, Mayer K, Arslan-Kirchner M, Grasso M, Beroud C, Hamroun D, Bonithon-Kopp C, Plauchu H, Robinson P, De Backer J, Coucke P, Francke U, Bouchot O, Wolf J, Stheneur C, Hanna N, Detaint D, De Paepe A, Boileau C, Jondeau G (2012) The new Ghent criteria for Marfan syndrome: what do they change? Clin Genet 81:433–442

    Article  CAS  PubMed  Google Scholar 

  10. Faivre L, Dollfus H, Lyonnet S, Alembik Y, Mégarbané A, Samples J, Gorlin R, Alswaid A, Feingold J, Le Merrer M, Munnich A, Cormier-Daire V (2003) Clinical homogeneity and genetic heterogeneity in Weill–Marchesani syndrome. Am J Med Genet A. 2003 Dec 1;123A(2):204-207

  11. Fujishiro T, Matsuura M, Fujino Y, Murata H, Tokumo K, Nakakura S, Kiuchi Y, Asaoka R (2020) The relationship between CorVis ST tonometry parameters and ocular response analyzer corneal hysteresis. J Glaucoma 29:479–484

    Article  PubMed  Google Scholar 

  12. Gehle P, Goergen B, Pilger D, Ruokonen P, Robinson P, Salchow D (2017) Biometric and structural ocular manifestations of Marfan syndrome. PLoS ONE 12:e0183370

    Article  PubMed  PubMed Central  Google Scholar 

  13. Glass D, Roberts C, Litsky A, Weber P (2008) A viscoelastic biomechanical model of the cornea describing the effect of viscosity and elasticity on hysteresis. Invest Ophthalmol Vis Sci 49:3919–3926

    Article  PubMed  Google Scholar 

  14. Hager A, Loge K, Füllhas MO, Schroeder B, Grossherr M, Wiegand W (2007) Changes in corneal hysteresis after clear corneal cataract surgery. Am J Ophthalmol 144:341–346

    Article  PubMed  Google Scholar 

  15. Hon Y, Lam A (2013) Corneal deformation measurement using Scheimpflug noncontact tonometry. Optom Vis Sci 90:e1-8

    Article  PubMed  Google Scholar 

  16. Hong J, Xu J, Wei A, Deng S, Cui X, Yu X, Sun X (2013) A new tonometer—the CorVis ST tonometer: clinical comparison with noncontact and Goldmann applanation tonometers. Invest Ophthalmol Vis Sci 54:659–665

    Article  PubMed  Google Scholar 

  17. Hubmacher D, Reinhardt D, Plesec T, Schenke-Layland K, Apte S (2014) Human eye development is characterized by coordinated expression of fibrillin isoforms. Invest Ophthalmol Vis Sci 55:7934–7944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Iordanidou V, Sultan G, Boileau C, Raphael M, Baudouin C (2007) In vivo corneal confocal microscopy in Marfan syndrome. Cornea 26:787–792

    Article  PubMed  Google Scholar 

  19. Jensen A, Cross H, Paton D (1974) Ocular complications in the Weill–Marchesani syndrome. Am J Ophthalmol 77:261–269

    Article  CAS  PubMed  Google Scholar 

  20. Judge D, Dietz H (2005) Marfan’s syndrome. Lancet (London, England) 366:1965–1976

    Article  CAS  PubMed  Google Scholar 

  21. Kara N, Bozkurt E, Baz O, Altinkaynak H, Dundar H, Yuksel K, Yazici A, Demirok A, Candan S (2012) Corneal biomechanical properties and intraocular pressure measurement in Marfan patients. J Cataract Refract Surg 38:309–314

    Article  PubMed  Google Scholar 

  22. Konradsen T, Koivula A, Kugelberg M, Zetterström C (2012) Corneal curvature, pachymetry, and endothelial cell density in Marfan syndrome. Acta Ophthalmol 90:375–379

    Article  PubMed  Google Scholar 

  23. Konradsen T, Zetterström C (2013) A descriptive study of ocular characteristics in Marfan syndrome. Acta Ophthalmol 91:751–755

    Article  PubMed  Google Scholar 

  24. Lee R, Chang R, Wong I, Lai J, Lee J, Singh K (2016) Assessment of corneal biomechanical parameters in myopes and emmetropes using the CorVis ST. Clin Exp Optom 99:157–162

    Article  PubMed  Google Scholar 

  25. Leung C, Ye C, Weinreb R (2013) An ultra-high-speed Scheimpflug camera for evaluation of corneal deformation response and its impact on IOP measurement. Invest Ophthalmol Vis Sci 54:2885–2892

    Article  PubMed  Google Scholar 

  26. Long W, Zhao Y, Hu Y, Li Z, Zhang X, Zhao W, Yang X, Cui D, Trier K (2019) Characteristics of corneal biomechanics in Chinese preschool children with different refractive status. Cornea 38:1395–1399

    Article  PubMed  Google Scholar 

  27. Maumenee I (1981) The eye in the Marfan syndrome. Trans Am Ophthalmol Soc 79:684–733

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Miki A, Maeda N, Ikuno Y, Asai T, Hara C, Nishida K (2017) Factors associated with corneal deformation responses measured with a dynamic Scheimpflug analyzer. Invest Ophthalmol Vis Sci 58:538–544

    Article  PubMed  Google Scholar 

  29. Miki A, Yasukura Y, Weinreb R, Maeda N, Yamada T, Koh S, Asai T, Ikuno Y, Nishida K (2020) Dynamic Scheimpflug ocular biomechanical parameters in untreated primary open angle glaucoma eyes. Invest Ophthalmol Vis Sci 61:19

    Article  PubMed  PubMed Central  Google Scholar 

  30. Peris-Martínez C, Díez-Ajenjo M, García-Domene M, Pinazo-Durán M, Luque-Cobija M, Del Buey-Sayas M, Ortí-Navarro S (2021) Evaluation of intraocular pressure and other biomechanical parameters to distinguish between subclinical keratoconus and healthy corneas. J Clin Med 2021 Apr 28;10(9):1905

  31. Piñero D, Alcón N (2015) Corneal biomechanics: a review. Clin Exp Optom 98:107–116

    Article  PubMed  Google Scholar 

  32. Qassim A, Mullany S, Abedi F, Marshall H, Hassall M, Kolovos A, Knight L, Nguyen T, Awadalla M, Chappell A, Schulz A, Galanopoulos A, Agar A, Healey P, Hewitt A, Graham S, Landers J, Casson R, Siggs O, Craig J (2020) Corneal stiffness parameters are predictive of structural and functional progression in glaucoma suspect eyes. Ophthalmology 2021 Jul;128(7):993–1004

  33. Qassim A, Mullany S, Abedi F, Marshall H, Hassall M, Kolovos A, Knight L, Nguyen T, Awadalla M, Chappell A, Schulz A, Galanopoulos A, Agar A, Healey P, Hewitt A, Graham S, Landers J, Casson R, Siggs O, Craig J (2021) Corneal stiffness parameters are predictive of structural and functional progression in glaucoma suspect eyes. Ophthalmology 128:993–1004

    Article  PubMed  Google Scholar 

  34. Rasooly R, Benezra D (1988) Unilateral lens dislocation and axial elongation in Marfan syndrome. Ophthalmic Paediatr Genet 9:135–136

    Article  CAS  PubMed  Google Scholar 

  35. Razeghinejad M, Hosseini H, Namazi N (2009) Biometric and corneal topographic characteristics in patients with Weill–Marchesani syndrome. J Cataract Refract Surg 35:1026–1032

    Article  PubMed  Google Scholar 

  36. Resch M, Schlötzer-Schrehardt U, Hofmann-Rummelt C, Kruse F, Seitz B (2009) Alterations of epithelial adhesion molecules and basement membrane components in lattice corneal dystrophy (LCD). Graefe's Arch Clin Exp Ophthalmol 247:1081–1088

  37. Salvetat M, Zeppieri M, Tosoni C, Felletti M, Grasso L, Brusini P (2015) Corneal deformation parameters provided by the CorVis-ST Pachy-tonometer in healthy subjects and glaucoma patients. J Glaucoma 24:568–574

    Article  PubMed  Google Scholar 

  38. Shah S, Laiquzzaman M, Cunliffe I, Mantry S (2006) The use of the Reichert ocular response analyser to establish the relationship between ocular hysteresis, corneal resistance factor and central corneal thickness in normal eyes. Cont Lens Anterior Eye 29:257–262

    Article  PubMed  Google Scholar 

  39. Streeten B, Licari P, Marucci A, Dougherty R (1981) Immunohistochemical comparison of ocular zonules and the microfibrils of elastic tissue. Invest Ophthalmol Vis Sci 21:130–135

    CAS  PubMed  Google Scholar 

  40. Sultan G, Baudouin C, Auzerie O, De Saint JM, Goldschild M, Pisella P (2002) Cornea in Marfan disease: orbscan and in vivo confocal microscopy analysis. Invest Ophthalmol Vis Sci 43:1757–1764

    PubMed  Google Scholar 

  41. Sun L, Shen M, Wang J, Fang A, Xu A, Fang H, Lu F (2009) Recovery of corneal hysteresis after reduction of intraocular pressure in chronic primary angle-closure glaucoma. Am J Ophthalmol 147(1061–1066):1066.e1061–1062

    Google Scholar 

  42. Tian L, Wang D, Wu Y, Meng X, Chen B, Ge M, Huang Y (2016) Corneal biomechanical characteristics measured by the CorVis Scheimpflug technology in eyes with primary open-angle glaucoma and normal eyes. Acta Ophthalmol 94:e317-324

    Article  PubMed  Google Scholar 

  43. Wang J, Li Y, Jin Y, Yang X, Zhao C, Long Q (2015) Corneal biomechanical properties in myopic eyes measured by a dynamic Scheimpflug analyzer. J Ophthalmol 2015:161869

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang W, Du S, Zhang X (2015) Corneal deformation response in patients with primary open-angle glaucoma and in healthy subjects analyzed by CorVis ST. Invest Ophthalmol Vis Sci 56:5557–5565

    Article  PubMed  Google Scholar 

  45. Wang Y, Lian Z, Zhou Y, Li X, Wu J, Zhang X, Jin G, Zheng D (2020) Differential diagnosis of Marfan syndrome based on ocular biologic parameters. Ann Transl Med 8:1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wheatley H, Traboulsi E, Flowers B, Maumenee I, Azar D, Pyeritz R, Whittum-Hudson J (1995) Immunohistochemical localization of fibrillin in human ocular tissues. Relevance to the Marfan syndrome. Arch Ophthalmol (Chicago, Ill 1960) 113:103–109

  47. Wheatley HM, Traboulsi EI, Flowers BE, Maumenee IH, Azar D, Pyeritz RE, Whittum-Hudson JA (1995) Immunohistochemical localization of fibrillin in human ocular tissues. Relevance to the Marfan syndrome. Arch Ophthalmol 113:103–109

    Article  CAS  PubMed  Google Scholar 

  48. White TL, Lewis P, Hayes S, Fergusson J, Bell J, Farinha L, White NS, Pereira LV, Meek KM (2017) The structural role of elastic fibers in the cornea investigated using a mouse model for Marfan syndrome. Invest Ophthalmol Vis Sci 2017 Apr 1;58(4):2106–2116

  49. Ye H, Liu Z, Cao Q, Young C, Lian Z, Zhang X, Zheng D, Jin G (2021) Characteristics of corneal higher-order aberrations in congenital ectopia lentis patients. Transl Vis Sci Technol 10:24

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang Y, Jin G, Cao Q, Lin J, Lin J, Wang Y, Poh S, Young C, Zheng D (2017) Distribution of axial length in Chinese congenital ectopia lentis patients: a retrospective study. BMC Ophthalmol 17:113

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (81873673, 81900841) and Guangdong Basic and Applied Basic Research Foundation (2022A1515011181).

Author information

Authors and Affiliations

Authors

Contributions

Designed the study, initiated the collaborative project, revised the paper (DY Zheng); Monitored data collection, wrote the statistical analysis plan and drafted the paper (GM Jin, LH Li and MJ Zou); Cleaned and analyzed the data (ZZ Liu, Charlotte Young and HT Qi); administrative, technical or logistic support (DY Zheng).

Corresponding author

Correspondence to Danying Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Patient and Public Involvement

Patients or the public were not involved in the design, or conduct, or reporting, or dissemination plans of our research.

Ethical statement

This study was conducted in accordance with the Declaration of Helsinki and approved by Zhongshan Ophthalmic Center Institutional Review Board (2019KYPJ183).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 17 KB)

Supplementary file 2 (DOCX 22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, G., Zou, M., Li, L. et al. Corneal biomechanics and their association with severity of lens dislocation in Marfan syndrome. Int Ophthalmol 44, 148 (2024). https://doi.org/10.1007/s10792-024-03079-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10792-024-03079-9

Keywords

Navigation