Skip to main content

Advertisement

Log in

Changes in asphericity of anterior and posterior corneal surfaces for mild–moderate and high myopia after topography-guided FS-LASIK

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To compare changes in asphericity of anterior and posterior corneal surfaces for different myopia patients after corneal topography-guided femtosecond-assisted laser in situ keratomileuses (FS-LASIK), and to analyze correlations between asphericity of corneal surfaces and preoperative spherical equivalence (SEQ).

Methods

In this prospective study, 59 patients who underwent corneal topography-guided FS-LASIK surgery were enrolled and divided into the mild–moderate myopia group (67 eyes) and the high myopia group (44 eyes). Postoperative follow-ups were performed at 1, 3, and 6 months. Postoperative changes in aspherical coefficient (Q values), corneal higher-order aberrations (HOAs), and spherical aberrations (Z40) were compared between the two groups. Relevance between Q value changes and SEQ, HOAs, and Z40 as well as between SEQ and changes of HOAs and Z40 was analyzed.

Results

There was a significant increase in Q values of the anterior (each diameter) and posterior (6–8 mm) corneal surface in both groups than before surgery (P < 0.001). Q values of corneal anterior (each diameter) and posterior (7–9 mm) surface in the high group were considerably larger than the mild–moderate group (P < 0.05). Corneal anterior surface HOAs and Z40 values in the high group largely exceeded those of the mild–moderate group (P < 0.001). The preoperative SEQ was linearly correlated with postoperative anterior Q change (ΔQ), HOAs change (ΔHOAs), and spherical aberration change (ΔZ40).

Conclusion

The changes of corneal asphericity in patients with high myopia were greater than mild–moderate myopia, with more corneal HOAs and Z40 introduced when corneal topography-guided FS-LASIK was conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on request.

References

  1. Ahn JM, Choi BJ, Kim EK, Sgrignoli B (2013) Three different aspheric treatment algorithms of laser-assisted sub-epithelial keratectomy in patients with high myopia. Jpn J Ophthalmol 57:191–198. https://doi.org/10.1007/s10384-012-0218-4

    Article  CAS  PubMed  Google Scholar 

  2. Villa C, Gutierrez R, Jimenez JR, Gonzalez-Meijome JM (2007) Night vision disturbances after successful LASIK surgery. Br J Ophthalmol 91:1031–1037. https://doi.org/10.1136/bjo.2006.110874

    Article  PubMed  PubMed Central  Google Scholar 

  3. El Awady HE, Ghanem AA, Saleh SM (2011) Wavefront-optimized ablation versus topography-guided customized ablation in myopic LASIK: comparative study of higher order aberrations. Ophthalmic Surg Lasers Imaging Retina 42:314–320. https://doi.org/10.3928/15428877-20110421-01

    Article  Google Scholar 

  4. Jain AK, Malhotra C, Pasari A, Kumar P, Moshirfar M (2016) Outcomes of topography-guided versus wavefront-optimized laser in situ keratomileusis for myopia in virgin eyes. J Cataract Refract Surg 42:1302–1311. https://doi.org/10.1016/j.jcrs.2016.06.035

    Article  PubMed  Google Scholar 

  5. Kim J, Choi S-H, Lim DH, Yang CM, Yoon G-J, Chung T-Y (2019) Topography-guided versus wavefront-optimized laser in situ keratomileusis for myopia: surgical outcomes. J Cataract Refract Surg 45:959–965. https://doi.org/10.1016/j.jcrs.2019.01.031

    Article  PubMed  Google Scholar 

  6. Holland S, Lin DT, Tan JC (2013) Topography-guided laser refractive surgery. Curr Opin Ophthalmol 24:302–309. https://doi.org/10.1097/ICU.0b013e3283622a59

    Article  PubMed  Google Scholar 

  7. Tan J, Simon D, Mrochen M, Por YM (2012) Clinical results of topography-based customized ablations for myopia and myopic astigmatism. J Refract Surg 28:S829–S836. https://doi.org/10.3928/1081597x-20121005-04

    Article  PubMed  Google Scholar 

  8. Zhang Y-L, Xu X-H, Cao L-J, Liu L (2020) Corneal curvature, asphericity, and aberrations after transepithelial photorefractive keratectomy and femtosecond laser-assisted in situ keratomileusis for myopia: a prospective comparative study. Indian J Ophthalmol 68:2945. https://doi.org/10.4103/ijo.IJO_1106_20

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bao F, Cao S, Wang J, Wang Y, Huang W, Zhu R, Zheng X, Huang J, Chen S, Li Y (2019) Regional changes in corneal shape over a 6-month follow-up after femtosecond-assisted LASIK. J Cataract Refract Surg 45:766–777. https://doi.org/10.1016/j.jcrs.2018.12.017

    Article  PubMed  Google Scholar 

  10. Patel SV, Erie JC, McLaren JW, Bourne WM (2007) Confocal microscopy changes in epithelial and stromal thickness up to 7 years after LASIK and photorefractive keratectomy for myopia. J Refract Surg 23:385–392. https://doi.org/10.3928/1081-597X-20070401-11

    Article  PubMed  Google Scholar 

  11. Ganesh S, Patel U, Brar S (2015) Posterior corneal curvature changes following refractive small incision lenticule extraction. Clin Ophthalmol 9:1359. https://doi.org/10.2147/OPTH.S84354

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yamaguchi T, Ohnuma K, Tomida D, Konomi K, Satake Y, Negishi K, Tsubota K, Shimazaki J (2011) The contribution of the posterior surface to the corneal aberrations in eyes after keratoplasty. Investig Ophthalmol Vis Sci 52:6222–6229. https://doi.org/10.1167/iovs.11-7647

    Article  Google Scholar 

  13. Vetter JM, Holtz C, Vossmerbaeumer U, Pfeiffer N (2012) Irregularity of the posterior corneal surface during applanation using a curved femtosecond laser interface and microkeratome cutting head. J Refract Surg 28:209–214. https://doi.org/10.3928/1081597X-20120208-02

    Article  PubMed  Google Scholar 

  14. Wu W, Wang Y (2016) Corneal higher-order aberrations of the anterior surface, posterior surface, and total cornea after SMILE, FS-LASIK, and FLEx surgeries. Eye Contact Lens 42:358–365. https://doi.org/10.1097/ICL.0000000000000225

    Article  PubMed  Google Scholar 

  15. Jin H-Y, Wan T, Yu X-N, Wu F, Yao K (2018) Corneal higher-order aberrations of the anterior surface, posterior surface, and total cornea after small incision lenticule extraction (SMILE): high myopia versus mild to moderate myopia. BMC Ophthalmol 18:1–9. https://doi.org/10.1186/s12886-018-0965-1

    Article  Google Scholar 

  16. Gyldenkerne A, Ivarsen A, Hjortdal JØ (2015) Comparison of corneal shape changes and aberrations induced by FS-LASIK and SMILE for myopia. J Refract Surg 31:223–229. https://doi.org/10.3928/1081597X-20150303-01

    Article  PubMed  Google Scholar 

  17. Xi L (2020) Wavefront properties of the anterior and posterior corneal surface after transepithelial photorefractive keratectomy in myopia. Exp Ther Med 19:1183–1188. https://doi.org/10.3892/etm.2019.8338

    Article  PubMed  Google Scholar 

  18. Juhasz E, Kranitz K, Sandor GL, Gyenes A, Toth G, Nagy ZZ (2014) Wavefront properties of the anterior and posterior corneal surface after photorefractive keratectomy. Cornea 33:172–176. https://doi.org/10.1097/ICO.0000000000000035

    Article  PubMed  Google Scholar 

  19. Chen X, Wang Y, Zhang J, Yang S-N, Li X, Zhang L (2017) Comparison of ocular higher-order aberrations after SMILE and Wavefront-guided Femtosecond LASIK for myopia. BMC Ophthalmol 17:1–8. https://doi.org/10.1186/s12886-017-0431-5

    Article  CAS  Google Scholar 

  20. Davis WR, Raasch TW, Mitchell GL, Mutti DO, Zadnik K (2005) Corneal asphericity and apical curvature in children: a cross-sectional and longitudinal evaluation. Investig Ophthalmol Vis Sci 46:1899–1906. https://doi.org/10.1167/iovs.04-0558

    Article  Google Scholar 

  21. Huang H, Yang J, Bao H, Chen S, Xia B, Zou J (2012) Retrospective analysis of changes in the anterior corneal surface after Q value guided LASIK and LASEK in high myopic astigmatism for 3 years. BMC Ophthalmol 12:1–6. https://doi.org/10.1186/1471-2415-12-15

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Tianjin Key Clinical Disciplines (Specialties) Construction Project (TJLCZDXKM013).

Author information

Authors and Affiliations

Authors

Contributions

YW and SSS have equal first authors. Study design (WY, HY, WSH); data collecting (WY, LZL, WGQ); data and statistical analysis (SSS, WY); writing the manuscript (SSS, WY); revision of the manuscript (HY, ZSZ, WRH).

Corresponding author

Correspondence to Yue Huang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Ethical approval

This study was performed in full compliance with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Tianjin Medical University (No. ChiCTR2100045632).

Informed consent

Full and informed consent was given by each subject for these experiments.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Sun, S., Liu, Z. et al. Changes in asphericity of anterior and posterior corneal surfaces for mild–moderate and high myopia after topography-guided FS-LASIK. Int Ophthalmol 42, 3555–3565 (2022). https://doi.org/10.1007/s10792-022-02356-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-022-02356-9

Keywords

Navigation