Skip to main content

Advertisement

Log in

Lasers in Glaucoma: an Overview

  • Review
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Lasers have been in use as a treatment modality of glaucoma for more than last four decades. Each passing year has added newer dimensions to the existing laser technologies enhancing their safety and efficacy profile. This has become possible due to continuous research and innovations with proper understanding of the mechanism of action of different variety of lasers as treatment options. Each category of glaucoma has different underlying pathologies. Adequate knowledge and understanding of indications, limitations and hazards of these laser procedures are must before their application for improvising outcome. Recent years have witnessed a revolution this field. A thorough literature search was conducted in PubMed, Medline, the Cochrane Library Database, EMBASE, and Scopus and Google Scholar until May 2020 using the keywords, and all the articles pertaining to the relevant topics were included in this review. Purpose of this review is to summarize the important laser procedures currently in use for managing glaucoma along with updating the readers with recent advances in laser technologies, their extended applications and also analyzing possible future implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  1. Holz HA, Lim MC (2005) Glaucoma lasers: a review of the newer techniques. Curr Opin Ophthalmol 16:89–93

    Article  PubMed  Google Scholar 

  2. Wise JB, Witter SL (1979) Argon laser therapy for open-angle glaucoma. Pilot Study Arch Ophthalmol 97:319–322

    Article  CAS  PubMed  Google Scholar 

  3. Anderson RR, Parish HA (1983) Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 220:524–547

    Article  CAS  PubMed  Google Scholar 

  4. WHO. Global Data on Visual Impairments 2010 (WHO/NMH/ PBD/12.01). Geneva: World Health Organization

  5. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121:2081–2090

    Article  PubMed  Google Scholar 

  6. Kumar H, Mansoori T, Warjri GB, Somarajan BI, Bandil S, Gupta V (2018) Lasers in glaucoma. Indian J Ophthalmol 66:1539–1553

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nolan WP, Foster PJ, Devereux JG, Uranchimeg D, Johnson GJ, Baasanhu J (2000) YAG laser iridotomy treatment for primary angle closure in east Asian eyes. Br J Ophthalmol 84:1255–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alsagoff Z, Aung T, Ang LP, Chew PT (2000) Long-term clinical course of primary angle-closure glaucoma in an Asian population. Ophthalmology 107:2300–2304

    Article  CAS  PubMed  Google Scholar 

  9. Bo J, Changulani T, Cheng M, Tatham A (2018) Outcome following laser peripheral iridotomy and predictors of future lens extraction. J Glaucoma 27(3):275–280

    Article  PubMed  Google Scholar 

  10. Rajjoub LZ, Chadha N, Belyea DA (2014) Intermittent acute angle closure glaucoma and chronic angle closure following topiramate use with plateau iris configuration. Clin Ophthalmol 8:1351–1354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Spaeth GL, Idowu O, Seligsohn A, Henderer J, Fonatanarosa J, Modi A et al (2005) The effects of iridotomy size and position on symptoms following laser peripheral iridotomy. J Glaucoma 14:364–367

    Article  PubMed  Google Scholar 

  12. Vera V, Naqi A, Belovay GW, Varma DK, Ahmed II (2014) Dysphotopsia after temporal versus superior laser peripheral iridotomy: a prospective randomized paired eye trial. Am J Ophthalmol 157:929–935

    Article  PubMed  Google Scholar 

  13. Kumar H, Sood NN, Kalra VK (1990a) Evaluation of Argon pre-treatment for mode locked Nd- YAG laser peripheral iridotomy in angle closure glaucoma. Glaucoma 12:126

    Google Scholar 

  14. Fleck BW (1990) How large must an iridotomy be? Br J Ophthalmol 74:583–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chung RS, Guan AE (2006) Unusual visual disturbance following laser peripheral iridotomy for intermittent angle closure glaucoma. Graefes Arch Clin Exp Ophthalmol 244:532–533

    Article  PubMed  Google Scholar 

  16. Murphy PH, Trope GE (1991) Monocular blurring. A complication of YAG laser iridotomy. Ophthalmology 98:1539–1542

    Article  CAS  PubMed  Google Scholar 

  17. Kumar H, Sood NN, Kalra VK (1990b) Pressure dynamics after mode-locked Nd:YAG laser iridotomy in angle-closure glaucoma. Glaucoma 12:39–46

    Google Scholar 

  18. Lim LS, Husain R, Gazzard G, Seah SK, Aung T (2005) Cataract progression after prophylactic laser peripheral iridotomy: potential implications for the prevention of glaucoma blindness. Ophthalmology 112:1355–1359

    Article  PubMed  Google Scholar 

  19. Vijaya L, Asokan R, Panday M, George R (2017) Is prophylactic laser peripheral iridotomy for primary angle closure suspects a risk factor for cataract progression? The Chennai eye disease incidence study. Br J Ophthalmol 101:665–670

    Article  PubMed  Google Scholar 

  20. Wang PX, Koh VT, Loon SC (2014) Laser iridotomy and the corneal endothelium: a systemic review. Acta Ophthalmol 92:604–616

    Article  PubMed  Google Scholar 

  21. Seong M, Kim MJ, Tchah H (2009) Argon laser iridotomy as a possible cause of anterior dislocation of a crystalline lens. J Cataract Refract Surg 35:190–192

    Article  PubMed  Google Scholar 

  22. Mutoh T, Barrette KF, Matsumoto Y, Chikuda M (2012) Lens dislocation has a possible relationship with laser iridotomy. Clin Ophthalmol 6:2019–2022

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ramani KK, Mani B, George RJ, Lingam V (2009) Follow-up of primary angle closure suspects after laser peripheral iridotomy using ultrasound biomicroscopy and A-scan biometry for a period of 2 years. J Glaucoma 18:521–527

    Article  PubMed  Google Scholar 

  24. Talajic JC, Lesk MR, Nantel-Battista M, Harasymowycz PJ (2013) Anterior segment changes after pilocarpine and laser iridotomy for primary angle-closure suspects with Scheimpflug photography. J Glaucoma 22:776–779

    Article  PubMed  Google Scholar 

  25. He M, Friedman DS, Ge J, Huang W, Jin C, Cai X et al (2007) Laser peripheral iridotomy in eyes with narrow drainage angles: ultrasound biomicroscopy outcomes. Liwan Eye Study Ophthalmol 114:1513–1519

    Google Scholar 

  26. He M, Jiang Y, Huang S et al (2019) Laser peripheral iridotomy for the prevention of angle closure: a single-centre, randomised controlled trial. Lancet 393:1609–1618

    Article  PubMed  Google Scholar 

  27. Sawada A, Yamamoto T (2012) Correlation between extent of preexisting organic angle closure and long-term outcome after laser peripheral iridotomy in eyes with primary angle closure. J Glaucoma 21:174–179

    Article  PubMed  Google Scholar 

  28. Zebardast N, Kavitha S, Krishnamurthy P, Friedman DS, Nongpiur ME, Aung T et al (2016) Changes in anterior segment morphology and predictors of angle widening after laser iridotomy in South Indian eyes. Ophthalmology 123:2519–2526

    Article  PubMed  Google Scholar 

  29. Van Buskirk EM, Pond V, Rosenquist RC, Acott TS (1984) Argon laser trabeculoplasty. Stud Mechan Action Ophthalmol 91:1005–1010

    Google Scholar 

  30. Smith J (1984) Argon laser trabeculoplasty: comparison of bichromatic and monochromatic wavelengths. Ophthalmology 91:355–360

    Article  CAS  PubMed  Google Scholar 

  31. Spurny RC, Lederer CM Jr (1984) Krypton laser trabeculoplasty. Clinical Report Arch Ophthalmol 102:1626–1628

    Article  CAS  PubMed  Google Scholar 

  32. McHugh D, Marshall J, Ffytche TJ, Hamilton PA, Raven A (1990) Diode laser trabeculoplasty (DLT) for primary open-angle glaucoma and ocular hypertension. Br J Ophthalmol 74:743–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Del Priore LV, Robin AL, Pollack IP (1988) Long-term follow-up of neodymium: YAG laser angle surgery for open-angle glaucoma. Ophthalmology 95:277–281

    Article  PubMed  Google Scholar 

  34. Latina MA, Sibayan SA, Shin DH, Noecker RJ, Marcellino G. Q-switched 532-nm Nd:YAG laser trabeculoplasty (selective laser trabeculoplasty): A multicenter, pilot, clinical study. Ophthalmology 1998; 105:2082–8; discussion 2089–90.

  35. Heijl A, Peters D, Leske MC, Bengtsson B (2011) Effects of argon laser trabeculoplasty in the early manifest glaucoma trial. Am J Ophthalmol 152:842–848

    Article  PubMed  Google Scholar 

  36. Ederer F, Gaasterland DA, Dally LG, Kim J, Van Veldhuisen PC, Blackwell B et al (2004) The Advanced Glaucoma Intervention Study (AGIS): 13. Comparison of treatment outcomes within race: 10-year results. Ophthalmology 111:651–664

    Article  PubMed  Google Scholar 

  37. GLT (1995) The Glaucoma Laser Trial (GLT) and glaucoma laser trial follow-up study: 7. Results. Glaucoma laser trial research group. Am J Ophthalmol. 120:718–731

    Article  Google Scholar 

  38. Ali Aljasim L, Owaidhah O, Edward DP (2016) Selective laser trabeculoplasty in primary angle-closure glaucoma after laser peripheral iridotomy: a case-control study. J Glaucoma 25:e253–e258

    Article  PubMed  Google Scholar 

  39. Narayanaswamy A, Leung CK, Istiantoro DV, Perera SA, Ho CL, Nongpiur ME et al (2015) Efficacy of selective laser trabeculoplasty in primary angle-closure glaucoma: a randomized clinical trial. JAMA Ophthalmol 133:206–212

    Article  PubMed  Google Scholar 

  40. Kurysheva NI, Lepeshkina LV (2019) Selective laser trabeculoplasty protects glaucoma progression in the initial primary open-angle glaucoma and angle-closure glaucoma after laser peripheral iridotomy in the long term. Biomed Res Int 21(2019):4519412

    Google Scholar 

  41. Matos AG, Asrani SG, Paula JS (2017) Feasibility of laser trabeculoplasty in angle closure glaucoma: a review of favourable histopathological findings in narrow angles. Clin Exp Ophthalmol 45:632–639

    Article  PubMed  Google Scholar 

  42. Gupta V, Ghosh S, Sujeeth M, Chaudhary S, Gupta S, Chaurasia AK et al (2018) Selective laser trabeculoplasty for primary open-angle glaucoma patients younger than 40 years. Can J Ophthalmol 53(1):81–85

    Article  PubMed  Google Scholar 

  43. Zhang M, Li B, Wang J, Liu W, Sun Y, Wu X (2014) Clinical results of selective laser trabeculoplasty in silicone oil-induced secondary glaucoma. Graefes Arch Clin Exp Ophthalmol 252:983–987

    Article  CAS  PubMed  Google Scholar 

  44. Maleki A, Swan RT, Lasave AF, Ma L, Foster CS (2016) Selective laser trabeculoplasty in controlled uveitis with steroid-induced glaucoma. Ophthalmology 123:2630–2632

    Article  PubMed  Google Scholar 

  45. Nagar M, Ogunyomade A, O’Brart DP, Howes F, Marshall J (2005) A randomised, prospective study comparing selective laser trabeculoplasty with latanoprost for the control of intraocular pressure in ocular hypertension and open angle glaucoma. Br J Ophthalmol 89:1413–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wong MO, Lee JW, Choy BN, Chan JC, Lai JS (2015) Systematic review and meta-analysis on the efficacy of selective laser trabeculoplasty in open-angle glaucoma. Surv Ophthalmol 60:36–50

    Article  PubMed  Google Scholar 

  47. Polat J, Grantham L, Mitchell K et al (2016) Repeatability of selective laser trabeculoplasty. Br J Ophthalmol 100:1437–1441

    Article  PubMed  Google Scholar 

  48. Hutnik C, Crichton A, Ford B, Nicolela M, Shuba L, Birt C et al (2019) Selective laser trabeculoplasty versus argon laser trabeculoplasty in glaucoma patients treated previously with 360° selective laser trabeculoplasty. Ophthalmology 126(2):223–232

    Article  PubMed  Google Scholar 

  49. Bovell AM, Damji KF, Hodge WG, Rock WJ, Buhrmann RR, Pan YI (2011) Long term effects on the lowering of intraocular pressure: selective laser or argon laser trabeculoplasty? Can J Ophthalmol 46:408–413

    Article  PubMed  Google Scholar 

  50. Baser G, Cengiz H, Unsal U, Karahan E (2018) The influence of selective laser trabeculoplasty on the success of trabeculectomy. Oman J Ophthalmol. 11(1):28–32

    PubMed  PubMed Central  Google Scholar 

  51. Song J (2016) Complications of selective laser trabeculoplasty: a review. Clin Ophthalmol 10:137–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kennedy JB, SooHoo JR, Kahook MY, Seibold LK (2016) Selective laser trabeculoplasty: an update. Asia Pac J Ophthalmol (Phila) 5:63

    Article  Google Scholar 

  53. Koenig LR, Kovacs KD, Gupta MP, Van Tassel SH (2020) Hypopyon following selective laser trabeculoplasty. Am J Ophthalmol Case Rep 18:100675

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hernández PF, Molina Martín JC, Fernández ML, Aguirre BF (2017) Bilateral choroidal effusion after selective laser trabeculoplasty. Archivos de la Sociedad Española de Oftalmología (English Edition) 92(6):295–298

    Google Scholar 

  55. APA Elahi, Sina MD, Rao, Harsha L MD, PhD, Dumitru, Alina MD; Mansouri, Kaweh MD, MPH, Predictors of success in selective laser trabeculoplasty, Journal of Glaucoma: May 08, 2020 - Volume Publish Ahead of Print

  56. Hirabayashi M, Ponnusamy V, An J (2020) Predictive factors for outcomes of selective laser trabeculoplasty. Sci Rep 10:9428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Khawaja AP, Campbell JH, Kirby N, Chandwani HS, Keyzor I, Parekh M, McNaught AI, Vincent D, Angela K, Nitin A, Gbemi O, Andrew M, Lydia C (2020) Real-world outcomes of selective laser trabeculoplasty in the united kingdom. Ophthalmology 127(6):748–757

    Article  PubMed  Google Scholar 

  58. Groth SL, Albeiruti E, Nunez M, Fajardo R, Sharpsten L, Loewen N et al (2019) SALT trial: steroids after laser trabeculoplasty: impact of short-term anti-inflammatory treatment on selective laser trabeculoplasty efficacy. Ophthalmology 126(11):1511–1516

    Article  PubMed  Google Scholar 

  59. Ingvoldstad DD, Krishna R, Willoughby L. 2005 Micropulse diode laser trabeculoplasty versus argon laser trabeculoplasty in the treatment of open-angle glaucoma. [Abstract]. Invest Ophthalmol Vis Sci; 46: 123.

  60. Işık MU, Değirmenci MFK, Sağlık A (2020) Efficacy of the subthreshold micropulse yellow wavelength laser photostimulation in the treatment of chronic central serous chorioretinopathy. Int J Ophthalmol 13(9):1404–1410. https://doi.org/10.18240/ijo.2020.09.11

    Article  PubMed  PubMed Central  Google Scholar 

  61. Coombs P, Radcliffe NM. Outcomes of micropulse laser trabeculoplasty versus. selective laser trabeculoplasty. ARVO 2014.

  62. Abramowitz B, Chadha N, Kouchouk A, Alhabshan R, Belyea DA, Lamba T (2018) Selective laser trabeculoplasty versus micropulse laser trabeculoplasty in open-angle glaucoma. Clin Ophthalmol 12:1599–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hirabayashi MT, Rosenlof TL, An JA (2019) Comparison of successful outcome predictors for MicroPulse and reg; laser trabeculoplasty and selective laser trabeculoplasty at 6 months. Clin Ophthalmol 13:1001–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Goldenfeld M, Melamed S, Simon G, Ben Simon GJ (2009) Titanium: sapphire laser trabeculoplasty versus argon laser trabeculoplasty in patients with open-angle glaucoma. Ophthalmic Surg Lasers Imaging 40:264–269

    Article  PubMed  Google Scholar 

  65. Kaplowitz K, Wang S, Bilonick R, Oatts JT, Grippo T, Loewen NA (2016) Randomized controlled comparison of titanium-sapphire versus standard Q-Switched Nd: YAG Laser trabeculoplasty. J Glaucoma 25(7):e663–e667

    Article  PubMed  Google Scholar 

  66. Turati M, Gil-Carrasco F, Morales A, Quiroz-Mercado H, Andersen D, Marcellino G et al (2010) Patterned laser trabeculoplasty. Ophthalmic Surg Lasers Imaging 41:538–545

    Article  PubMed  Google Scholar 

  67. Barbu CE, Rasche W, Wiedemann P et al (2014) Pattern laser trabeculoplasty and argon laser trabeculoplasty for treatment of glaucoma. Ophthalmologe 111:948–953

    Article  CAS  PubMed  Google Scholar 

  68. Kim JM, Cho KJ, Kyung SE et al (2014) Short-term clinical outcomes of laser trabeculoplasty using a 577-nm wavelength laser. J Korean Ophthalmol Soc 55:563–569

    Article  Google Scholar 

  69. Mansouri K, Shaarawy T (2017) Comparing pattern scanning laser trabeculoplasty to selective laser trabeculoplasty: a randomized controlled trial. Acta Ophthalmol 95(5):e361–e365

    Article  PubMed  Google Scholar 

  70. Krasnov MM (1977) Q-switched laser iridectomy and Q-switched laser goniopuncture. Adv Ophthalmol 34:192–196

    CAS  PubMed  Google Scholar 

  71. Kimbrough RL, Trempe CS, Brockhurst RJ, Simmons RJ (1979) Angle-closure glaucoma in nanophthalmos. Am J Ophthalmol 88(3 Pt 2):572–579

    Article  CAS  PubMed  Google Scholar 

  72. Ritch R, Tham CC, Lam DS (2007) Argon laser peripheral iridoplasty (ALPI): an update. Surv Ophthalmol 52:279–288

    Article  PubMed  Google Scholar 

  73. Zhang HC (2002) Yao K [Peripheral iridoplasty with doubled-frequency Nd:YAG laser as treatment for angle-closure glaucoma]. Zhejiang Da Xue Xue Bao Yi Xue Ban 31:388–390

    PubMed  Google Scholar 

  74. Midha N, Hoskens K, Mansouri K (2018) Pattern scanning laser (PASCAL) for peripheral iridoplasty in eyes with plateau iris syndrome: a novel application. J Glaucoma 27(7):e124–e127

    Article  PubMed  Google Scholar 

  75. Ritch R, Tham CC, Lam DS (2004) Long-term success of argon laser peripheral iridoplasty in the management of plateau iris syndrome. Ophthalmology 111:104–108

    Article  PubMed  Google Scholar 

  76. Ritch R (1982) Argon laser treatment for medically unresponsive attacks of angle-closure glaucoma. Am J Ophthalmol 94:197–204

    Article  CAS  PubMed  Google Scholar 

  77. Zhou W, Zhao F, Shi D, Qadri M, Jiang L, Ma L (2019) Argon laser peripheral iridoplasty and argon laser pupilloplasty: alternative management for medically unresponsive acute primary angle closure. J Ophthalmol. 2019:1–7

    Google Scholar 

  78. Yip PP, Leung WY, Hon CY, Ho CK (2005) Argon laser peripheral iridoplasty in the management of phacomorphic glaucoma. Ophthalmic Surg Lasers Imaging 36:286–291

    Article  PubMed  Google Scholar 

  79. Bourne RRA, Zhekov I, Pardhan S (2017) Temporal ocular coherence tomography-measured changes in anterior chamber angle and diurnal intraocular pressure after laser iridoplasty: IMPACT study. Br J Ophthalmol 101:886–891

    Article  PubMed  Google Scholar 

  80. Narayanaswamy A, Baskaran M, Perera SA, Nongpiur ME, Htoon HM, Tun TA et al (2016) Argon laser peripheral iridoplasty for primary angle-closure glaucoma: a randomized controlled trial. Ophthalmology 123:514–521

    Article  PubMed  Google Scholar 

  81. Espana EM, Ioannidis A, Tello C, Liebmann JM, Foster P, Ritch R (2007) Urrets-Zavalia syndrome as a complication of argon laser peripheral iridoplasty. Br J Ophthalmol 91:427–429

    Article  CAS  PubMed  Google Scholar 

  82. Lam DS, Lai JS, Tham CC, Chua JK, Poon AS (2002) Argon laser peripheral iridoplasty versus conventional systemic medical therapy in treatment of acute primary angle-closure glaucoma: a prospective, randomized, controlled trial. Ophthalmology 109:1591–1616

    Article  PubMed  Google Scholar 

  83. Pantcheva MB, Kahook MY, Schuman JS, Noecker RJ (2007) Comparison of acute structural and histopathological changes in human autopsy eyes after endoscopic cyclophotocoagulation and trans-scleral cyclophotocoagulation. Br J Ophthalmol 91:248–252

    Article  PubMed  PubMed Central  Google Scholar 

  84. Beckman H, Kinoshita A, Rota AN, Sugar HS (1972) Transscleral ruby laser irradiation of the ciliary body in the treatment of intractable glaucoma. Trans Am Acad Ophthalmol Otolaryngol 76:423–436

    CAS  PubMed  Google Scholar 

  85. Suzuki Y, Araie M, Yumita A, Yamamoto T (1991) Transscleral Nd:YAG laser cyclophotocoagulation versus cyclocryotherapy. Graefes Arch Clin Exp Ophthalmol 229:33–36

    Article  CAS  PubMed  Google Scholar 

  86. Bloom PA, Tsai JC, Sharma K, Miller MH, Rice NS, Hitchings RA, et al. 1997 “Cyclodiode.” Trans-scleral diode laser cyclophotocoagulation in the treatment of advanced refractory glaucoma. Ophthalmology, 104:1508–19; discussion 1519–20

  87. Oguri A, Takahashi E, Tomita G, Yamamoto T, Jikihara S, Kitazawa Y (1998) Transscleral cyclophotocoagulation with the diode laser for neovascular glaucoma. Ophthalmic Surg Lasers 29:722–727

    CAS  PubMed  Google Scholar 

  88. Rodriguez-Garcia A, Gonzalez-Gonzalez LA, Carlos A-G (2016) Trans-scleral diode laser cyclophotocoagulation for refractory glaucoma after high-risk penetrating keratoplasty. Int Ophthalmol 36:373–383

    Article  PubMed  Google Scholar 

  89. Gedde SJ (2002) Management of glaucoma after retinal detachment surgery. Curr Opin Ophthalmol 13:103–109

    Article  PubMed  Google Scholar 

  90. Autrata R, Rehurek J (2003) Long-term results of transscleral cyclophotocoagulation in refractory pediatric glaucoma patients. Ophthalmologica 217:393–400

    Article  CAS  PubMed  Google Scholar 

  91. Gupta V, Agarwal HC (2000) Contact trans-scleral diode laser cyclophotocoagulation treatment for refractory glaucomas in the Indian population. Indian J Ophthalmol 48:295–300

    CAS  PubMed  Google Scholar 

  92. Ishida K (2013) Update on results and complications of cyclophotocoagulation. Curr Opin Ophthalmol 24:102–110

    Article  PubMed  Google Scholar 

  93. Bhola RM, Prasad S, McCormick AG, Rennie IG, Talbot JF, Parsons MA (2001) Pupillary distortion and staphyloma following trans-scleral contact diode laser cyclophotocoagulation: a clinicopathological study of three patients. Eye (Lond) 15(Pt 4):453–547

    Article  CAS  Google Scholar 

  94. Subramaniam K, Price MO, Feng MT, Price FW (2019) Micropulse transscleral cyclophotocoagulation in keratoplasty eyes. Cornea 38(5):542–545

    Article  PubMed  Google Scholar 

  95. Abdelrahman AM, El Sayed YM (2018) Micropulse versus continuous wave transscleral cyclophotocoagulation in refractory pediatric glaucoma. J Glaucoma 27(10):900–905

    Article  PubMed  Google Scholar 

  96. Sanchez F., Peirano-Bonomi J., Brossard Barbosa N., Khoueir Z. and Grippo T. 2020 Update on Micropulse Transscleral Cyclophotocoagulation.J. Glaucoma. May; Publish Ahead of Print.

  97. Norris JL, Cleas GW (1978) An endoscope for ophthalmology. Am J Ophthalmol 85:420–422

    Article  CAS  PubMed  Google Scholar 

  98. Chen J, Cohn RA, Lin SC, Cortes AE, Alvarado JA (1997) Endoscopic photocoagulation of the ciliary body for treatment of refractory glaucomas. Am J Ophthalmol 124:787–796

    Article  CAS  PubMed  Google Scholar 

  99. Lima FE, Magacho L, Carvalho DM, Susanna R Jr, Avila MP (2004) A prospective, comparative study between endoscopic cyclophotocoagulation and the Ahmed drainage implant in refractory glaucoma. J Glaucoma 13:233–237

    Article  PubMed  Google Scholar 

  100. Seibold LK, SooHoo JR, Kahook MY (2015) Endoscopic cyclophotocoagulation. Middle East Afr J Ophthalmol 22:18–24

    Article  PubMed  PubMed Central  Google Scholar 

  101. Francis BA, Kwon J, Fellman R, Noecker R, Samuelson T, Uram M et al (2014) Endoscopic ophthalmic surgery of the anterior segment. Surv Ophthalmol 59:217–231

    Article  PubMed  Google Scholar 

  102. Roberts SJ, Mulvahill M, SooHoo JR, Pantcheva MB, Kahook MY, Seibold LK (2016) Efficacy of combined cataract extraction and endoscopic cyclophotocoagulation for the reduction of intraocular pressure and medication burden. Int J Ophthalmol 9:693–698

    PubMed  PubMed Central  Google Scholar 

  103. Francis BA, Berke SJ, Dustin L, Noecker R (2014) Endoscopic cyclophotocoagulation combined with phacoemulsification versus phacoemulsification alone in medically controlled glaucoma. J Cataract Refract Surg 40:1313–1321

    Article  PubMed  Google Scholar 

  104. Rodrigues I, Bloch E, Lim W, Goyal S (2020) Phacoemulsification combined with endoscopic versus transscleral cyclophotocoagulation in poorly controlled glaucoma - a comparative case series. J Glaucoma 29(1):53–59

    Article  PubMed  Google Scholar 

  105. Marco S, Damji KF, Nazarali S, Rudnisky CJ (2017) Cataract and glaucoma surgery: endoscopic cyclophotocoagulation versus trabeculectomy. Middle East Afr J Ophthalmol 24(4):177–182

    Article  PubMed  PubMed Central  Google Scholar 

  106. Cantor AJ, Wang J, Li S, Neely DE, Plager DA (2018) Long-term efficacy of endoscopic cyclophotocoagulation in the management of glaucoma following cataract surgery in children. J AAPOS 22(3):188–191

    Article  PubMed  PubMed Central  Google Scholar 

  107. Francis BA, Pouw A, Jenkins D, Babic K, Vakili G, Tan J et al (2016) Endoscopic cycloplasty (ECPL) and lens extraction in the treatment of severe plateau iris syndrome. J Glaucoma 25:e128–e133

    Article  PubMed  Google Scholar 

  108. Pathak-Ray V, Ahmed II (2016) Phaco-endocycloplasty: a novel technique for management of ring iridociliary cyst presenting as acute angle closure. Oman J Ophthalmol 9:63–65

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lin S (2002) Endoscopic cyclophotocoagulation. Br J Ophthalmol 86:1434–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hoskins HD Jr, Migliazzo C (1984) Management of failing filtering blebs with the argon laser. Ophthalmic Surg 15:731–733

    PubMed  Google Scholar 

  111. Pappa KS, Derick RJ, Weber PA, Kapetansky FM, Baker ND, Lehmann DM (1993) Late argon laser suture lysis after mitomycin C trabeculectomy. Ophthalmology 100:1268–1271

    Article  CAS  PubMed  Google Scholar 

  112. Krömer M, Nölle B, Rüfer F (2015) Laser suture lysis after trabeculectomy with mitomycin C: analysis of suture selection. J Glaucoma 24(5):84–87

    Article  Google Scholar 

  113. Kratz A, Goldberg I, Levy J, Knyazer B, Lifshitz T (2017) A novel method for laser suture lysis using multispot laser system. J Glaucoma 4:163–164

    Article  Google Scholar 

  114. Epstein DL, Steinert RF, Puliafito CA (1984) Neodymium-YAG laser therapy to the anterior hyaloid in aphakic malignant (ciliovitreal block) glaucoma. Am J Ophthalmol 98:137–143

    Article  CAS  PubMed  Google Scholar 

  115. Little BC, Hitchings RA (1993) Pseudophakic malignant glaucoma: Nd:YAG capsulotomy as a primary treatment. Eye (Lond) 7(Pt 1):102–104

    Article  Google Scholar 

  116. Debrouwere V, Stalmans P, Van Calster J, Spileers W, Zeyen T, Stalmans I (2012) Outcomes of different management options for malignant glaucoma: a retrospective study. Graefes Arch Clin Exp Ophthalmol 250:131–141

    Article  PubMed  Google Scholar 

  117. Thomas M, Boese E, Lieu P, Shah M (2020) Slit-lamp pars plana needle hyaloidotomy-zonulotomy-iridotomy for the treatment of spontaneous malignant glaucoma. J Glaucoma 29(5):e31–e32

    Article  PubMed  Google Scholar 

  118. Sony P, Kumar H, Pushker N (2004) Treatment of overhanging blebs with frequency-doubled Nd:YAG laser. Ophthalmic Surg Lasers Imaging 35:429–432

    Article  PubMed  Google Scholar 

  119. Kumar H, Dangda S (2016) Bleb reduction using combined photodisruptive and photocoagulative neodymium-doped yttrium-aluminum-garnet laser. Indian J Ophthalmol 64:934–936

    Article  PubMed  PubMed Central  Google Scholar 

  120. El Sayyad F, Helal M, El-Kholify H et al (2000) Nonpenetrating deep sclerectomy versus trabeculectomy in bilateral primary open-angle glaucoma. Ophthalmology 107:1671–1674

    Article  PubMed  Google Scholar 

  121. Chiselita D (2001) Nonpenetrating deep sclerectomy versus trabeculectomy in primary open-angle glaucoma surgery. Eye 15:197–201

    Article  CAS  PubMed  Google Scholar 

  122. Ollikainen ML, Puustjarvi TJ, Rekonen PK et al (2011) Mitomycin C-augmented deep sclerectomy in primary open angle glaucoma and exfoliation glaucoma: a three-year prospective study. Acta Ophthalmol 89:548–555

    Article  PubMed  Google Scholar 

  123. Anand N, Pilling R (2010) Nd:YAG Laser goniopuncture after deep sclerectomy: outcomes. Acta Ophthalmol 88(1):110–115

    Article  PubMed  Google Scholar 

  124. Walker R, Specht H (2002) Theoretical and physical aspects of excimer laser trabeculotomy (ELT) ab interno with the AIDA laser with a wave length of 308 nm. Biomed Tech (Berl) 47:106–110

    Article  CAS  Google Scholar 

  125. Babighian S, Caretti L, Tavolato M et al (2010) Excimer laser trabeculotomy vs 180 degrees selective laser trabeculoplasty in primary open-angle glaucoma. A 2-year randomized, controlled trial. Eye. 24:632–638

    Article  CAS  PubMed  Google Scholar 

  126. Aquino MC, Barton K, Tan AM, Sng C, Li X, Loon SC et al (2015) Micropulse versus continuous wave transscleral diode cyclophotocoagulation in refractory glaucoma: a randomized exploratory study. Clin Exp Ophthalmol 43:40–46

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors have no commercial or proprietary interest in any concept or product described in this article. This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally in this work. All authors have read and approved the final manuscript and given their consent for publication of the article.

Corresponding author

Correspondence to Rashmi Kumari.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest.

Human and animal rights

This systematic review has included articles on human subjects from peer reviewed journals which were published in compliance with ethical standards and retrieved from database. No animals studies were involved in this review.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, B.C., Kumari, R., Sinha, B.P. et al. Lasers in Glaucoma: an Overview. Int Ophthalmol 41, 1111–1128 (2021). https://doi.org/10.1007/s10792-020-01654-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-020-01654-4

Keywords

Navigation