Skip to main content

Advertisement

Log in

Ocular microcirculation changes, measured with laser speckle flowgraphy and optical coherence tomography angiography, in branch retinal vein occlusion with macular edema treated by ranibizumab

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

This study searched for early predictive vascular biomarkers for visual outcomes in eyes with macular edema caused by branch retinal vein occlusion (BRVOME).

Methods

Twenty-four eyes of 24 subjects with BRVOME were treated with the intravitreal injection of ranibizumab (IVR) for at least 6 months. We measured mean blur rate (MBR) in the optic nerve head (ONH) and vessel density (VD) in the macula with laser speckle flowgraphy and optical coherence tomography angiography, respectively.

Results

Six-month post-IVR best-corrected visual acuity (BCVA) was correlated positively with age, pre-IVR BCVA, 1-month post-IVR BCVA, 3-month post-IVR BCVA and pre-IVR systolic blood pressure (P < 0.001, P < 0.001, P < 0.001, P < 0.001 and P = 0.02, respectively) and negatively with pre-IVR overall MBR, 1-month post-IVR overall MBR, 6-month post-IVR overall MBR, 3-month post-IVR deep retinal capillary plexus (DCP) VD and 6-month post-IVR DCP VD (P = 0.03, P = 0.03, P = 0.02, P = 0.01 and P = 0.005, respectively). Furthermore, a multiple regression analysis showed that pre-IVR overall MBR (β =  − 0.67, P = 0.009) was among independent prognostic factors predicting 6-month post-IVR BCVA. Six-month post-IVR DCP VD was also correlated with overall MBR at all time points.

Conclusion

ONH blood flow may be a pre-IVR biomarker of both visual outcomes and post-IVR deep macular microcirculation in eyes with BRVOME.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Campochiaro PA, Clark WL, Boyer DS, Heier JS, Brown DM, Vitti R, Kazmi H, Berliner AJ, Erickson K, Chu KW, Soo Y, Cheng Y, Haller JA (2015) Intravitreal aflibercept for macular edema following branch retinal vein occlusion: the 24-week results of the VIBRANT study. Ophthalmology 122(3):538–544

    PubMed  Google Scholar 

  2. Campochiaro PA, Hafiz G, Channa R, Shah SM, Nguyen QD, Ying H, Do DV, Zimmer-Galler I, Solomon SD, Sung JU, Syed B (2010) Antagonism of vascular endothelial growth factor for macular edema caused by retinal vein occlusions: two-year outcomes. Ophthalmology 117(12):2387–2394 e2381-2385

    PubMed  Google Scholar 

  3. Pece A, Isola V, Piermarocchi S, Calori G (2011) Efficacy and safety of anti-vascular endothelial growth factor (VEGF) therapy with intravitreal ranibizumab (Lucentis) for naive retinal vein occlusion: 1-year follow-up. Br J Ophthalmol 95(1):56–68

    PubMed  Google Scholar 

  4. Hayashi K, Hayashi H (2005) Intravitreal versus retrobulbar injections of triamcinolone for macular edema associated with branch retinal vein occlusion. Am J Ophthalmol 139(6):972–982

    CAS  PubMed  Google Scholar 

  5. Finkelstein D (1986) Argon laser photocoagulation for macular edema in branch vein occlusion. Ophthalmology 93(7):975–977. https://doi.org/10.1016/S0161-6420(86)33651-0

    Article  CAS  PubMed  Google Scholar 

  6. Parodi MB, Spasse S, Iacono P, Di Stefano G, Canziani T, Ravalico G (2006) Subthreshold grid laser treatment of macular edema secondary to branch retinal vein occlusion with micropulse infrared (810 nanometer) diode laser. Ophthalmology 113(12):2237–2242

    PubMed  Google Scholar 

  7. Kumagai K, Furukawa M, Ogino N, Uemura A, Larson E (2007) Long-term outcomes of vitrectomy with or without arteriovenous sheathotomy in branch retinal vein occlusion. Retina 27(1):49–54

    PubMed  Google Scholar 

  8. Tachi N, Hashimoto Y, Ogino N (1999) Vitrectomy for macular edema combined with retinal vein occlusion. Doc Ophthalmol 97(3–4):465–469

    CAS  PubMed  Google Scholar 

  9. Ehlers JP, Kim SJ, Yeh S, Thorne JE, Mruthyunjaya P, Schoenberger SD, Bakri SJ (2017) Therapies for macular edema associated with branch retinal vein occlusion: a report by the American Academy of Ophthalmology. Ophthalmology 124(9):1412–1423

    PubMed  Google Scholar 

  10. Wang X, Sawada T, Sawada O, Saishin Y, Liu P, Ohji M (2014) Serum and plasma vascular endothelial growth factor concentrations before and after intravitreal injection of aflibercept or ranibizumab for age-related macular degeneration. Am J Ophthalmol 158(4):738–744 e731

    CAS  PubMed  Google Scholar 

  11. Avery RL, Castellarin AA, Steinle NC, Dhoot DS, Pieramici DJ, See R, Couvillion S, Nasir MA, Rabena MD, Le K, Maia M, Visich JE (2014) Systemic pharmacokinetics following intravitreal injections of ranibizumab, bevacizumab or aflibercept in patients with neovascular AMD. Br J Ophthalmol 98(12):1636–1641

    PubMed  PubMed Central  Google Scholar 

  12. Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, Lombardi LH, Gattey DM, Armour RL, Edmunds B, Kraus MF, Fujimoto JG, Huang D (2014) Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 121(7):1322–1332

    PubMed  PubMed Central  Google Scholar 

  13. Jia Y, Bailey ST, Wilson DJ, Tan O, Klein ML, Flaxel CJ, Potsaid B, Liu JJ, Lu CD, Kraus MF, Fujimoto JG, Huang D (2014) Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology 121(7):1435–1444

    PubMed  PubMed Central  Google Scholar 

  14. Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, Kraus MF, Subhash H, Fujimoto JG, Hornegger J, Huang D (2012) Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 20(4):4710–4725

    PubMed  PubMed Central  Google Scholar 

  15. Chung CY, Li KKW (2018) Optical coherence tomography angiography wide-field montage in branch retinal vein occlusion before and after anti-vascular endothelial-derived growth factor injection. Int Ophthalmol 38(3):1305–1307

    PubMed  Google Scholar 

  16. Scarinci F, Nesper PL, Fawzi AA (2016) Deep retinal capillary nonperfusion is associated with photoreceptor disruption in diabetic macular ischemia. Am J Ophthalmol 168:129–138

    PubMed  PubMed Central  Google Scholar 

  17. Roisman L, Rosenfeld PJ (2016) Optical coherence tomography angiography of macular telangiectasia type 2. Dev Ophthalmol 56:146–158

    PubMed  Google Scholar 

  18. Matet A, Daruich A, Dirani A, Ambresin A, Behar-Cohen F (2016) Macular telangiectasia type 1: capillary density and microvascular abnormalities assessed by optical coherence tomography angiography. Am J Ophthalmol 167:18–30

    CAS  PubMed  Google Scholar 

  19. Lin TC, Chung YC, Lin CY, Lee FL, Chen SJ (2016) Focal nonperfusion of deep retinal capillary plexus in eyes with epiretinal membranes revealed by optical coherence tomography angiography. Ophthalmic Surg Lasers Imag Retina 47(5):404–409

    Google Scholar 

  20. Zhang Q, Wang RK, Chen CL, Legarreta AD, Durbin MK, An L, Sharma U, Stetson PF, Legarreta JE, Roisman L, Gregori G, Rosenfeld PJ (2015) Swept source optical coherence tomography angiography of neovascular macular telangiectasia type 2. Retina 35(11):2285–2299

    PubMed  PubMed Central  Google Scholar 

  21. Sugiyama T, Araie M, Riva CE, Schmetterer L, Orgul S (2010) Use of laser speckle flowgraphy in ocular blood flow research. Acta Ophthalmol 88(7):723–729

    PubMed  Google Scholar 

  22. Nagahara M, Tamaki Y, Tomidokoro A, Araie M (2011) In vivo measurement of blood velocity in human major retinal vessels using the laser speckle method. Invest Ophthalmol Vis Sci 52(1):87–92

    PubMed  Google Scholar 

  23. Kunikata H, Nakazawa T (2016) Recent clinical applications of laser speckle flowgraphy in eyes with retinal disease. Asia Pac J Ophthalmol (Phila) 5(2):151–158

    Google Scholar 

  24. Nakazawa T (2016) Ocular blood flow and influencing factors for glaucoma. Asia Pac J Ophthalmol (Phila) 5(1):38–44

    CAS  Google Scholar 

  25. Micieli JA, Tsui E, Lam WC, Brent MH, Devenyi RG, Hudson C (2012) Retinal blood flow in response to an intravitreal injection of ranibizumab for neovascular age-related macular degeneration. Acta Ophthalmol 90(1):e13–20

    CAS  PubMed  Google Scholar 

  26. Fukami M, Iwase T, Yamamoto K, Kaneko H, Yasuda S, Terasaki H (2017) Changes in retinal microcirculation after intravitreal ranibizumab injection in eyes with macular edema secondary to branch retinal vein occlusion. Invest Ophthalmol Vis Sci 58(2):1246–1255

    CAS  PubMed  Google Scholar 

  27. Jaissle GB, Szurman P, Feltgen N, Spitzer B, Pielen A, Rehak M, Spital G, Heimann H, Meyer CH (2011) Predictive factors for functional improvement after intravitreal bevacizumab therapy for macular edema due to branch retinal vein occlusion. Graefe Arch Clin Exp Ophthalmol 249(2):183–192

    CAS  Google Scholar 

  28. Winegarner A, Wakabayashi T, Fukushima Y, Sato T, Hara-Ueno C, Busch C, Nishiyama I, Shiraki N, Sayanagi K, Nishida K, Sakaguchi H, Nishida K (2018) Changes in retinal microvasculature and visual acuity after antivascular endothelial growth factor therapy in retinal vein occlusion. Invest Ophthalmol Vis Sci 59(7):2708–2716

    PubMed  Google Scholar 

  29. Al-Sheikh M, Falavarjani KG, Tepelus TC, Sadda SR (2017) Quantitative comparison of swept-source and spectral-domain OCT angiography in healthy eyes. Ophthalmic Surg Lasers Imag Retina 48(5):385–391

    Google Scholar 

  30. Spaide RF, Curcio CA (2017) Evaluation of segmentation of the superficial and deep vascular layers of the retina by optical coherence tomography angiography instruments in normal eyes. JAMA Ophthalmol 135(3):259–262

    PubMed  Google Scholar 

  31. Fujii H (1994) Visualisation of retinal blood flow by laser speckle flow-graphy. Med Biol Eng Compu 32(3):302–304

    CAS  Google Scholar 

  32. Sugiyama T, Utsumi T, Azuma I, Fujii H (1996) Measurement of optic nerve head circulation: comparison of laser speckle and hydrogen clearance methods. Jpn J Ophthalmol 40(3):339–343

    CAS  PubMed  Google Scholar 

  33. Tamaki Y, Araie M, Kawamoto E, Eguchi S, Fujii H (1995) Non-contact, two-dimensional measurement of tissue circulation in choroid and optic nerve head using laser speckle phenomenon. Exp Eye Res 60(4):373–383

    CAS  PubMed  Google Scholar 

  34. Nitta F, Kunikata H, Aizawa N, Omodaka K, Shiga Y, Yasuda M, Nakazawa T (2014) The effect of intravitreal bevacizumab on ocular blood flow in diabetic retinopathy and branch retinal vein occlusion as measured by laser speckle flowgraphy. Clin Ophthalmol 8:1119–1127

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Carmo A, Cunha-Vaz JG, Carvalho AP, Lopes MC (2000) Nitric oxide synthase activity in retinas from non-insulin-dependent diabetic Goto-Kakizaki rats: correlation with blood-retinal barrier permeability. Nitric Oxide 4(6):590–596

    CAS  PubMed  Google Scholar 

  36. Abu El-Asrar AM, Desmet S, Meersschaert A, Dralands L, Missotten L, Geboes K (2001) Expression of the inducible isoform of nitric oxide synthase in the retinas of human subjects with diabetes mellitus. Am J Ophthalmol 132(4):551–556

    CAS  PubMed  Google Scholar 

  37. Zheng L, Du Y, Miller C, Gubitosi-Klug RA, Ball S, Berkowitz BA, Kern TS (2007) Critical role of inducible nitric oxide synthase in degeneration of retinal capillaries in mice with streptozotocin-induced diabetes. Diabetologia 50(9):1987–1996

    CAS  PubMed  Google Scholar 

  38. Leal EC, Manivannan A, Hosoya K, Terasaki T, Cunha-Vaz J, Ambrosio AF, Forrester JV (2007) Inducible nitric oxide synthase isoform is a key mediator of leukostasis and blood-retinal barrier breakdown in diabetic retinopathy. Invest Ophthalmol Vis Sci 48(11):5257–5265

    PubMed  Google Scholar 

  39. Gracner T (2004) Ocular blood flow velocity determined by color Doppler imaging in diabetic retinopathy. Ophthalmologica 218(4):237–242

    PubMed  Google Scholar 

  40. Shimura M, Yasuda K (2010) Macular ischaemia after intravitreal bevacizumab injection in patients with central retinal vein occlusion and a history of diabetes and vascular disease. Br J Ophthalmol 94(3):381–383

    PubMed  Google Scholar 

  41. Huang ZL, Lin KH, Lee YC, Sheu MM, Tsai RK (2010) Acute vision loss after intravitreal injection of bevacizumab (avastin) associated with ocular ischemic syndrome. Ophthalmologica 224(2):86–89

    CAS  PubMed  Google Scholar 

  42. Costanzo E, Parravano M, Gilardi M, Cavalleri M, Sacconi R, Aragona E, Varano M, Bandello F, Querques G (2019) Microvascular retinal and choroidal changes in retinal vein occlusion analyzed by two different optical coherence tomography angiography devices. Ophthalmologica 242(1):8–15

    PubMed  Google Scholar 

  43. Winegarner A, Wakabayashi T, Fukushima Y, Sato T, Hara-Ueno C, Busch C, Nishiyama I, Shiraki N, Sayanagi K, Nishida K, Sakaguchi H (2018) Changes in retinal microvasculature and visual acuity after antivascular endothelial growth factor therapy in retinal vein occlusion. Invest Ophthalmol Vis Sci 59(7):2708–2716

    PubMed  Google Scholar 

  44. Wakabayashi T, Sato T, Hara-Ueno C, Fukushima Y, Sayanagi K, Shiraki N, Sawa M, Ikuno Y, Sakaguchi H, Nishida K (2017) Retinal microvasculature and visual acuity in eyes with branch retinal vein occlusion: imaging analysis by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 58(4):2087–2094

    PubMed  Google Scholar 

  45. Kang JW, Yoo R, Jo YH, Kim HC (2017) Correlation of microvascular structures on optical coherence tomography angiography with visual acuity in retinal vein occlusion. Retina 37(9):1700–1709

    PubMed  Google Scholar 

  46. Liu H, Li S, Zhang Z, Shen J (2018) Predicting the visual acuity for retinal vein occlusion after ranibizumab therapy with an original ranking for macular microstructure. Exp Ther Med 15(1):890–896

    CAS  PubMed  Google Scholar 

  47. Chatziralli I, Theodossiadis G, Chatzirallis A, Parikakis E, Mitropoulos P, Theodossiadis P (2018) Ranibizumab for retinal vein occlusion: predictive factors and long-term outcomes in real-life data. Retina 38(3):559–568

    CAS  PubMed  Google Scholar 

  48. Muraoka Y, Tsujikawa A, Murakami T, Ogino K, Miyamoto K, Yoshimura N (2013) Branch retinal vein occlusion-associated subretinal hemorrhage. Jpn J Ophthalmol 57(3):275–282

    PubMed  Google Scholar 

  49. Zhou JQ, Xu L, Wang S, Wang YX, You QS, Tu Y, Yang H, Jonas JB (2013) The 10-year incidence and risk factors of retinal vein occlusion: the Beijing eye study. Ophthalmology 120(4):803–808

    PubMed  Google Scholar 

  50. Madanagopalan VG, Kumari B (2018) Predictive value of baseline biochemical parameters for clinical response of macular edema to bevacizumab in eyes with central retinal vein occlusion: a retrospective analysis. Asia Pac J Ophthalmol (Phila) 7(5):321–330

    CAS  Google Scholar 

  51. Minami Y, Nagaoka T, Ishibazawa A, Yoshida A (2017) Correlation between short- and long-term effects of intravitreal ranibizumab therapy on macular edema after branch retinal vein occlusion: a prospective observational study. BMC Ophthalmol 17(1):90

    PubMed  PubMed Central  Google Scholar 

  52. Shiono A, Kogo J, Sasaki H, Yomoda R, Jujo T, Tokuda N, Kitaoka Y, Takagi H (2018) Optical coherence tomography findings as a predictor of clinical course in patients with branch retinal vein occlusion treated with ranibizumab. PLoS ONE 13(6):e0199552

    PubMed  PubMed Central  Google Scholar 

  53. Sengul A, Rasier R, Ciftci C, Artunay O, Kockar A, Bahcecioglu H, Yuzbasioglu E (2017) Short-term effects of intravitreal ranibizumab and bevacizumab administration on 24-h ambulatory blood pressure monitoring recordings in normotensive patients with age-related macular degeneration. Eye (Lond) 31(5):677–683

    CAS  Google Scholar 

  54. Singh RP, Habbu K, Ehlers JP, Lansang MC, Hill L, Stoilov I (2016) The impact of systemic factors on clinical response to ranibizumab for diabetic macular edema. Ophthalmology 123(7):1581–1587

    PubMed  Google Scholar 

  55. Arakawa S, Yasuda M, Nagata M, Ninomiya T, Hirakawa Y, Doi Y, Kiyohara Y, Ishibashi T (2011) Nine-year incidence and risk factors for retinal vein occlusion in a general Japanese population: the Hisayama study. Investig Ophthalmol Vis Sci 52(8):5905–5909

    Google Scholar 

Download references

Acknowledgements

The principal investigator, Dr. Toshifumi Asano, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the analysis. No authors have any potential conflicts of interest to disclose. This paper was supported by JST grants from JSPS KAKENHI Grants-in-Aid for Scientific Research (C) (H.K.40361092). The funders had no role in the design or conduct of the study; collection, management, analysis or interpretation of the data; preparation, review or approval of the manuscript; or the decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Contributions

TA, HK and TN were involved in design and conduct of the study. TA, HK, MY, KN, TA and TN were involved in preparation, collection, management, analysis and interpretation of the data. TN approved the manuscript. HK wrote the main manuscript text. TA and HK prepared all tables and all figures, and all authors reviewed the manuscript.

Corresponding author

Correspondence to Hiroshi Kunikata.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asano, T., Kunikata, H., Yasuda, M. et al. Ocular microcirculation changes, measured with laser speckle flowgraphy and optical coherence tomography angiography, in branch retinal vein occlusion with macular edema treated by ranibizumab. Int Ophthalmol 41, 151–162 (2021). https://doi.org/10.1007/s10792-020-01562-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-020-01562-7

Keywords

Navigation