Skip to main content

Advertisement

Log in

Curcumin suppressed proliferation and migration of human retinoblastoma cells through modulating NF-κB pathway

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

A Correction to this article was published on 04 May 2021

This article has been updated

Abstract

Purpose

To study the effect of curcumin on proliferation and invasion of the human retinoblastoma cells and its potential mechanism.

Methods

A cell line of retinoblastoma (WERI-Rb-1) was treated with various concentrations of curcumin (0–40 µM). Cell number was counted with CCK8 kit, and cell migration was assessed using the Transwell assay. Immunoblotting was performed to detect the proteins of metalloproteinase-2 (MMP-2), MMP-9 and vascular endothelial growth factor (VEGF) as well as nuclear translocation of nuclear factor-κB (NF-κB, p65).

Results

Proliferation and migration of WERI-Rb-1 cells were significantly inhibited by curcumin in a concentration-dependent manner (0–40 µM). Protein expressions of MMP-2, MMP-9 and VEGF in the WERI-Rb-1 cells were also significantly inhibited by curcumin in a concentration-dependent manner (0–40 µM). Furthermore, nuclear translocation of NF-κB (p65) was significantly inhibited by curcumin in time-dependent manner (6–24 h).

Conclusion

Curcumin inhibited proliferation and migration of WERI-Rb-1 cells, a cell line of human retinoblastoma, which might be through modulating NF-κB and its downstream proteins including VEGF, MMP-2, and MMP-9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Fabian ID, Puccinelli F, Gaillard MC et al (2017) Diagnosis and management of secondary epipapillary retinoblastoma. Br J Ophthalmol 101:1412–1418

    Article  Google Scholar 

  2. Ramirez-Ortiz MA, Lansingh VC, Eckert KA et al (2017) Systematic review of the current status of programs and general knowledge of diagnosis and management of retinoblastoma. Bol Med Hosp Infant Mex 74:41–54

    PubMed  Google Scholar 

  3. Shields CL, Shields JA (2006) Basic understanding of current classification and management of retinoblastoma. Curr Opin Ophthalmol 17:228–234

    Article  Google Scholar 

  4. Broaddus E, Topham A, Singh AD (2009) Incidence of retinoblastoma in the USA: 1975–2004. Br J Ophthalmol 93:21–23

    Article  CAS  Google Scholar 

  5. Raj A, Arya SK, Punia RS, Kohli P (2016) Adult onset retinoblastoma: a diagnostic dilemma. Orbit 35:51–53

    Article  Google Scholar 

  6. Sengupta S, Pan U, Khetan V (2016) Adult onset retinoblastoma. Indian J Ophthalmol 64:485–491

    Article  Google Scholar 

  7. Ortiz MV, Dunkel IJ (2016) Retinoblastoma. J Child Neurol 31:227–236

    Article  Google Scholar 

  8. Nelson KM, Dahlin JL, Bisson J et al (2017) The essential medicinal chemistry of curcumin. J Med Chem 60:1620–1637

    Article  CAS  Google Scholar 

  9. Shi J, Wang Y, Jia Z et al (2017) Curcumin inhibits bladder cancer progression via regulation of beta-catenin expression. Tumour Biol 39:1010428317702548

    PubMed  Google Scholar 

  10. Shanmugam MK, Rane G, Kanchi MM et al (2015) The multifaceted role of curcumin in cancer prevention and treatment. Molecules 20:2728–2769

    Article  Google Scholar 

  11. Jin L, Zhang W, Pan H et al (2017) Retrospective investigation of retinoblastoma in Chinese patients. Oncotarget 8:108492–108497

    Article  Google Scholar 

  12. Gao J, Zeng J, Guo B et al (2016) Clinical presentation and treatment outcome of retinoblastoma in children of South Western China. Medicine (Baltimore) 95:e5204

    Article  Google Scholar 

  13. Shi J, Zhang X, Shi T, Li H (2017) Antitumor effects of curcumin in human bladder cancer in vitro. Oncol Lett 14:1157–1161

    Article  CAS  Google Scholar 

  14. Sreenivasan S, Ravichandran S, Vetrivel U, Krishnakumar S (2013) Modulation of multidrug resistance 1 expression and function in retinoblastoma cells by curcumin. J Pharmacol Pharmacother 4:103–109

    Article  CAS  Google Scholar 

  15. Sreenivasan S, Krishnakumar S (2015) Synergistic effect of curcumin in combination with anticancer agents in human retinoblastoma cancer cell lines. Curr Eye Res 40:1153–1165

    Article  CAS  Google Scholar 

  16. Yu X, Zhong J, Yan L et al (2016) Curcumin exerts antitumor effects in retinoblastoma cells by regulating the JNK and p38 MAPK pathways. Int J Mol Med 38:861–868

    Article  CAS  Google Scholar 

  17. Li Y, Sun W, Han N et al (2018) Curcumin inhibits proliferation, migration, invasion and promotes apoptosis of retinoblastoma cell lines through modulation of miR-99a and JAK/STAT pathway. BMC Cancer 18:1230

    Article  CAS  Google Scholar 

  18. Sareen D, van Ginkel PR, Takach JC et al (2006) Mitochondria as the primary target of resveratrol-induced apoptosis in human retinoblastoma cells. Invest Ophthalmol Vis Sci 47:3708–3716

    Article  Google Scholar 

  19. Qiu H, Yuan S, Zhang L (2015) Oxymatrine induce apoptosis in retinoblastoma cells and its mechanism. Guangzhou Med 46:52–54

    Google Scholar 

  20. Wang X, Chen K (2008) Expression of Bcl-2 in human retinoblastoma Rb cell influenced by allicin. J Med Forum 16:9–12

    Article  Google Scholar 

  21. Fadus MC, Lau C, Bikhchandani J, Lynch HT (2017) Curcumin: an age-old anti-inflammatory and anti-neoplastic agent. J Tradit Complement Med 7:339–346

    Article  Google Scholar 

  22. Haryuna TS, Munir D, Maria A, Bashiruddin J (2017) The antioxidant effect of curcumin on cochlear fibroblasts in rat models of diabetes mellitus. Iran J Otorhinolaryngol 29:197–202

    PubMed  PubMed Central  Google Scholar 

  23. Xiao J, Sheng X, Zhang X et al (2016) Curcumin protects against myocardial infarction-induced cardiac fibrosis via SIRT1 activation in vivo and in vitro. Drug Des Devel Ther 10:1267–1277

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Akar I, Ince I, Arici A et al (2017) The protective effect of curcumin on a spinal cord ischemia-reperfusion injury model. Ann Vasc Surg 42:285–292

    Article  Google Scholar 

  25. Zhou S, Yao D, Guo L, Teng L (2017) Curcumin suppresses gastric cancer by inhibiting gastrin-mediated acid secretion. FEBS Open Bio 7:1078–1084

    Article  CAS  Google Scholar 

  26. Li G, Wang Z, Chong T et al (2017) Curcumin enhances the radiosensitivity of renal cancer cells by suppressing NF-kappaB signaling pathway. Biomed Pharmacother 94:974–981

    Article  CAS  Google Scholar 

  27. Adiwidjaja J, McLachlan AJ, Boddy AV (2017) Curcumin as a clinically-promising anti-cancer agent: pharmacokinetics and drug interactions. Expert Opin Drug Metab Toxicol 13:953–972

    Article  CAS  Google Scholar 

  28. Lei C, Luo X, Hou J (2009) Curcumin induces DNA damage and cell cycle phase changes in retinoblastoma cell line Hxo-rb44. Journal of Clinical Ophthalmology 17:558–560

    Google Scholar 

  29. Hu A, Huang JJ, Jin XJ et al (2015) Curcumin suppresses invasiveness and vasculogenic mimicry of squamous cell carcinoma of the larynx through the inhibition of JAK-2/STAT-3 signaling pathway. Am J Cancer Res 5:278–288

    PubMed  Google Scholar 

  30. Zhu GH, Dai HP, Shen Q et al (2016) Curcumin induces apoptosis and suppresses invasion through MAPK and MMP signaling in human monocytic leukemia SHI-1 cells. Pharm Biol 54:1303–1311

    CAS  PubMed  Google Scholar 

  31. Wang F, Liu Y, Bi Z (2017) Pioglitazone inhibits growth of human retinoblastoma cells via regulation of NF-kappaB inflammation signals. J Recept Signal Transduct Res 37:94–99

    Article  CAS  Google Scholar 

  32. Nagendraprabhu P, Khatiwada S, Chaulagain S et al (2017) A parapoxviral virion protein targets the retinoblastoma protein to inhibit NF-kappaB signaling. PLoS Pathog 13:e1006779

    Article  Google Scholar 

  33. Kuo JJ, Chang HH, Tsai TH, Lee TY (2012) Curcumin ameliorates mitochondrial dysfunction associated with inhibition of gluconeogenesis in free fatty acid-mediated hepatic lipoapoptosis. Int J Mol Med 30:643–649

    Article  CAS  Google Scholar 

  34. Adithi M, Nalini V, Kandalam M, Krishnakumar S (2007) Expression of matrix metalloproteinases and their inhibitors in retinoblastoma. J Pediatr Hematol Oncol 29:399–405

    Article  CAS  Google Scholar 

  35. Webb AH, Gao BT, Goldsmith ZK et al (2017) Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angiogenesis in in vitro models of retinoblastoma. BMC Cancer 17:434

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Kun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, YT., Feng, HH., Yu, JQ. et al. Curcumin suppressed proliferation and migration of human retinoblastoma cells through modulating NF-κB pathway. Int Ophthalmol 40, 2435–2440 (2020). https://doi.org/10.1007/s10792-020-01406-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-020-01406-4

Keywords

Navigation