Skip to main content

Advertisement

Log in

Antigen-presenting cells in ocular surface diseases

  • Review
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To review the role of antigen-presenting cells (APC) in the pathogenesis of ocular surface diseases (OSD).

Methods

A thorough literature search was performed in PubMed database. An additional search was made in Google Scholar to complete the collected items.

Results

APCs have the ability to initiate and direct immune responses and are found in most lymphoid and non-lymphoid tissues. APCs continuously sample their environment, present antigens to T cells and co-ordinate immune tolerance and responses. Many different types of APCs have been described and there is growing evidence that these cells are involved in the pathogenesis of OSD. OSD is a complex term for a myriad of disorders that are often characterized by ocular surface inflammation, tear film instability and impairment of vision.

Conclusions

This review summarizes the current knowledge concerning the immunotopographical distribution of APCs in the normal ocular surface. APCs appear to play a critical role in the pathology of a number of conditions associated with OSD including infectious keratitis, ocular allergy, dry eye disease and pterygium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barabino S, Chen Y, Chauhan S, Dana R (2012) Ocular surface immunity: homeostatic mechanisms and their disruption in dry eye disease. Prog Retin Eye Res 31(3):271–285. https://doi.org/10.1016/j.preteyeres.2012.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bose T, Lee R, Hou A, Tong L, Chandy KG (2017) Tissue resident memory T cells in the human conjunctiva and immune signatures in human dry eye disease. Sci Rep 27(7):45312. https://doi.org/10.1038/srep45312

    Article  CAS  Google Scholar 

  3. Forrester JV, Xu H, Kuffová L, Dick AD, McMenamin PG (2010) Dendritic cell physiology and function in the eye. Immunol Rev 234(1):282–304. https://doi.org/10.1111/j.0105-2896.2009.00873.x

    Article  CAS  PubMed  Google Scholar 

  4. Forrester JV, Xu H (2012) Good news–bad news: the Yin and Yang of immune privilege in the eye. Front Immunol 27(3):338. https://doi.org/10.3389/fimmu.2012.00338

    Article  CAS  Google Scholar 

  5. Kwon MS, Carnt NA, Truong NR et al (2018) Dendritic cells in the cornea during Herpes simplex viral infection and inflammation. Surv Ophthalmol 63(4):565–578. https://doi.org/10.1016/j.survophthal.2017.11.001

    Article  PubMed  Google Scholar 

  6. Mastropasqua R, Agnifili L, Fasanella V et al (2017) The conjunctiva-associated lymphoid tissue in chronic ocular surface diseases. Microsci Microanal 23(4):697–707. https://doi.org/10.1017/S1431927617000538

    Article  CAS  Google Scholar 

  7. Reyes NJ, OKoren EG, Saban DR (2017) New insights into mononuclear phagocyte biology from the visual system. Nat Rev Immunol 17(5):322–332. https://doi.org/10.1038/nri.2017.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Saban DR (2014) The chemokine receptor CCR7 expressed by dendritic cells: a key player in corneal and ocular surface inflammation. Ocul Surf. 12(2):87–99. https://doi.org/10.1016/j.jtos.2013.10.007

    Article  PubMed  Google Scholar 

  9. Hattori T, Takahashi H, Dana R (2016) Novel insights into the immunoregulatory function and localization of dendritic cells. Cornea 35(Suppl 1):S49–S54. https://doi.org/10.1097/ICO.0000000000001005

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dale SB, Saban DR (2015) Linking immune responses with fibrosis in allergic eye disease. Curr Opin Allergy Clin Immunol. 15(5):467–475. https://doi.org/10.1097/aci.0000000000000197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nakamura T, Ishikawa F, Sonoda KH et al (2005) Characterization and distribution of bone marrow–derived cells in mouse cornea. Invest Ophthalmol Vis Sci 46(2):497–503. https://doi.org/10.1167/iovs.04-1154

    Article  PubMed  Google Scholar 

  12. Yamagami S, Hamrah P, Miyamoto K et al (2005) CCR5 chemokine receptor mediates recruitment of MHC class II-positive Langerhans cells in the mouse corneal epithelium. Invest Ophthalmol Vis Sci 46(4):1201–1207. https://doi.org/10.1167/iovs.04-0658

    Article  PubMed  Google Scholar 

  13. Hamrah P, Liu Y, Zhang Q, Dana MR (2003) The corneal stroma is endowed with a significant number of resident dendritic cells. Invest Ophthalmol Vis Sci 44(2):581–589

    Article  Google Scholar 

  14. Hamrah P, Liu Y, Zhang Q, Dana MR (2003) Alterations in corneal stromal dendritic cell phenotype and distribution in inflammation. Arch Ophthalmol 121(8):1132–1140. https://doi.org/10.1001/archopht.121.8.1132

    Article  PubMed  Google Scholar 

  15. Hamrah P, Zhang Q, Liu Y, Dana MR (2002) Novel characterization of MHC class II–negative population of resident corneal Langerhans cell–type dendritic cells. Invest Ophthalmol Vis Sci 43(3):639–646

    PubMed  Google Scholar 

  16. Knickelbein JE, Watkins SC, McMenamin PG, Hendricks RL (2009) Stratification of antigen-presenting cells within the normal cornea. Ophthalmol Eye Dis. 25(1):45–54

    Google Scholar 

  17. Hattori T, Chauhan SK, Lee H et al (2011) Characterization of Langerin-expressing dendritic cell subsets in the normal cornea. Invest Ophthalmol Vis Sci 52(7):4598–4604. https://doi.org/10.1167/iovs.10-6741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yamaguchi T, Hamrah P, Shimazaki J (2016) Bilateral alterations in corneal nerves, dendritic cells, and tear cytokine levels in ocular surface disease. Cornea 35(Suppl 1):S65–S70

    Article  Google Scholar 

  19. Shaker M, Salcone E (2016) An update on ocular allergy. Curr Opin Allergy Clin Immunol 16(5):505–510. https://doi.org/10.1097/aci.0000000000000299

    Article  CAS  PubMed  Google Scholar 

  20. Narumi M, Kashiwagi Y, Namba H, Ohe R, Yamakawa M, Yamashita H (2014) Contribution of corneal neovascularization to dendritic cell migration into the central area during human corneal infection. PLoS One 9(10):e109859. https://doi.org/10.1371/journal.pone.0109859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mayer WJ, Mackert MJ, Kranebitter N et al (2012) Distribution of antigen presenting cells in the human cornea: correlation of in vivo confocal microscopy and immunohistochemistry in different pathologic entities. Curr Eye Res 37(11):1012–1018. https://doi.org/10.3109/02713683.2012.696172

    Article  CAS  PubMed  Google Scholar 

  22. Knickelbein JE, Buela KA, Hendricks RL (2014) Antigen-presenting cells are stratified within normal human corneas and are rapidly mobilized during ex vivo viral infection. Invest Ophthalmol Vis Sci 55(2):1118–1123. https://doi.org/10.1167/iovs.13-13523

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cruzat A, Schrems WA, Schrems-Hoesl LM et al (2015) Contralateral clinically unaffected eyes of patients with unilateral infectious keratitis demonstrate a sympathetic immune response. Invest Ophthalmol Vis Sci 56(11):6612–6620. https://doi.org/10.1167/iovs.15-16560

    Article  PubMed  PubMed Central  Google Scholar 

  24. Postole AS, Knoll AB, Auffarth GU, Mackensen F (2016) In vivo confocal microscopy of inflammatory cells in the corneal subbasal nerve plexus in patients with different subtypes of anterior uveitis. Br J Ophthalmol 100(11):1551–1556. https://doi.org/10.1136/bjophthalmol-2015-307429

    Article  PubMed  Google Scholar 

  25. Yamagami S, Yokoo S, Usui T, Yamagami H, Amano S, Ebihara N (2005) Distinct populations of dendritic cells in the normal human donor corneal epithelium. Invest Ophthalmol Vis Sci 46(12):4489–4494. https://doi.org/10.1167/iovs.05-0054

    Article  PubMed  Google Scholar 

  26. Yamagami S, Ebihara N, Usui T, Yokoo S, Amano S (2006) Bone marrow–derived cells in normal human corneal stroma. Arch Ophthalmol 124(1):62–69. https://doi.org/10.1001/archopht.124.1.62

    Article  PubMed  Google Scholar 

  27. Yamagami S, Yokoo S, Amano S, Ebihara N (2007) Characterization of bone marrow-derived cells in the substantia propria of the human conjunctiva. Invest Ophthalmol Vis Sci 48(10):4476–4481. https://doi.org/10.1167/iovs.06-1543

    Article  PubMed  Google Scholar 

  28. Wilkinson A, Kawaguchi N, Geczy C, Di Girolamo N (2016) S100A8 and S100A9 proteins are expressed by human corneal stromal dendritic cells. Br J Ophthalmol 100(9):1304–1308. https://doi.org/10.1136/bjophthalmol-2016-308827

    Article  PubMed  Google Scholar 

  29. Zhivov A, Stave J, Vollmar B, Guthoff R (2005) In vivo confocal microscopic evaluation of Langerhans cell density and distribution in the normal human corneal epithelium. Graefes Arch Clin Exp Ophthalmol 243(10):1056–1061. https://doi.org/10.1007/s00417-004-1075-8

    Article  PubMed  Google Scholar 

  30. Mayer WJ, Irschick UM, Moser P et al (2007) Characterization of antigen-presenting cells in fresh and cultured human corneas using novel dendritic cell markers. Invest Ophthalmol Vis Sci 48(10):4459–4467. https://doi.org/10.1167/iovs.06-1184

    Article  PubMed  Google Scholar 

  31. Buela KA, Hendricks RL (2015) Cornea-infiltrating and lymph node dendritic cells contribute to CD4+ T cell expansion after herpes simplex virus-1 ocular infection. J Immunol. 194(1):379–387. https://doi.org/10.4049/jimmunol.1402326

    Article  CAS  PubMed  Google Scholar 

  32. Jiang Y, Yin X, Stuart PM, Leib DA (2015) Dendritic cell autophagy contributes to herpes simplex virus-driven stromal keratitis and immunopathology. MBio. 6(6):e01426–e01526. https://doi.org/10.1128/mbio.01426-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hu K, Harris DL, Yamaguchi T, von Andrian UH, Hamrah P (2015) A dual role for corneal dendritic cells in herpes simplex keratitis: local suppression of corneal damage and promotion of systemic viral dissemination. PLoS One 10(9):e0137123. https://doi.org/10.1371/journal.pone.0137123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Manzouri B, Ohbayashi M, Leonardi A, Fattah D, Larkin DF, Ono SJ (2010) Characterisation of the phenotype and function of monocyte-derived dendritic cells in allergic conjunctiva. Br J Ophthalmol 94(12):1662–1667. https://doi.org/10.1136/bjo.2009.177774

    Article  PubMed  Google Scholar 

  35. El-Asrar AM, Al-Kharashi SA, Al-Mansouri S, Missotten L, Geboes K (2001) Langerhans cells in vernal keratoconjunctivitis express the costimulatory molecule B7-2 (CD86), but not B7-1 (CD80). Eye (Lond). 15(Pt 5):648–654. https://doi.org/10.1038/eye.2001.202

    Article  PubMed  Google Scholar 

  36. Khandelwal P, Blanco-Mezquita T, Emami P et al (2013) Ocular mucosal CD11b+ and CD103+ mouse dendritic cells under normal conditions and in allergic immune responses. PLoS One 8(5):e64193. https://doi.org/10.1371/journal.pone.0064193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Deng R, Su Z, Lu F et al (2014) A potential link between bacterial pathogens and allergic conjunctivitis by dendritic cells. Exp Eye Res 120:118–126. https://doi.org/10.1016/j.exer.2014.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ahadome SD, Mathew R, Reyes NJ et al (2016) Classical dendritic cells mediate fibrosis directly via the retinoic acid pathway in severe eye allergy. JCI Insight. https://doi.org/10.1172/jci.insight.87012

    Article  PubMed  PubMed Central  Google Scholar 

  39. Matsuda A, Ebihara N, Yokoi N et al (2010) Functional role of thymic stromal lymphopoietin in chronic allergic keratoconjunctivitis. Invest Ophthalmol Vis Sci 51(1):151–155. https://doi.org/10.1167/iovs.09-4183

    Article  PubMed  Google Scholar 

  40. Choi EY, Kang HG, Lee CH et al (2017) Langerhans cells prevent subbasal nerve damage and upregulate neurotrophic factors in dry eye disease. PloS One. https://doi.org/10.1371/journal.pone.0176153

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kheirkhah A, Darabad RR, Cruzat A et al (2015) Corneal epithelial immune dendritic cell alterations in subtypes of dry eye disease: a pilot in vivo confocal microscopic study. Invest Ophthalmol Vis Sci 56(12):7179–7185. https://doi.org/10.1167/iovs.15-17433

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lin H, Li W, Dong N et al (2010) Changes in corneal epithelial layer inflammatory cells in aqueous tear–deficient dry eye. Invest Ophthalmol Vis Sci 51(1):122–128. https://doi.org/10.1167/iovs.09-3629

    Article  PubMed  Google Scholar 

  43. Lužnik Z, Kopitar AN, Lapajne L et al (2018) Identification and characterization of dendritic cell subtypes in preserved and cultured cadaveric human corneolimbal tissue on amniotic membrane. Acta Ophthalmol. https://doi.org/10.1111/aos.13854

    Article  PubMed  Google Scholar 

  44. Mazzoni A, Segal DM (2004) Controlling the Toll road to dendritic cell polarization. J Leukoc Biol 75(5):721–730. https://doi.org/10.1189/jlb.1003482

    Article  CAS  PubMed  Google Scholar 

  45. Buechler C, Ritter M, Orsó E, Langmann T, Klucken J, Schmitz G (2000) Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro-and antiinflammatory stimuli. J Leukoc Biol 67(1):97–103

    Article  CAS  Google Scholar 

  46. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216. https://doi.org/10.1146/annurev.immunol.20.083001.084359

    Article  CAS  Google Scholar 

  47. Austin A, Lietman T, Rose-Nussbaumer J (2017) Update on the Management of Infectious Keratitis. Ophthalmology 124(11):1678–1689. https://doi.org/10.1016/j.ophtha.2017.05.012

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lobo AM, Agelidis AM, Shukla D (2019) Pathogenesis of herpes simplex keratitis: the host cell response and ocular surface sequelae to infection and inflammation. Ocul Surf 17(1):40–49. https://doi.org/10.1016/j.jtos.2018.10.002

    Article  PubMed  Google Scholar 

  49. Matundan H, Mott KR, Ghiasi H (2014) Role of CD8+ T cells and lymphoid dendritic cells in protection from ocular herpes simplex virus 1 challenge in immunized mice. J Virol 88(14):8016–8027. https://doi.org/10.1128/JVI.00913-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Matundan H, Ghiasi H (2019) Herpes simplex virus 1 ICP22 suppresses CD80 expression by murine dendritic cells. J Virol. https://doi.org/10.1128/jvi.01803-18

    Article  PubMed  PubMed Central  Google Scholar 

  51. Stern ME, Schaumburg CS, Pflugfelder SC (2013) Dry eye as a mucosal autoimmune disease. Int Rev Immunol 32(1):19–41. https://doi.org/10.3109/08830185.2012.748052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pflugfelder SC, de Paiva CS (2017) The pathophysiology of dry eye disease: what we know and future directions for research. Ophthalmology 124(11S):S4–S13. https://doi.org/10.1016/j.ophtha.2017.07.010

    Article  PubMed  PubMed Central  Google Scholar 

  53. Contreras-Ruiz L, Regenfuss B, Mir FA, Kearns J, Masli S (2013) Conjunctival inflammation in thrombospondin-1 deficient mouse model of Sjögrens syndrome. PLoS One 8(9):e75937. https://doi.org/10.1371/journal.pone.0075937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ji YW, Seo Y, Choi W et al (2014) Dry eye-induced CCR7+ CD11b+ cell lymph node homing is induced by COX-2 activities. Invest Ophthalmol Vis Sci 55(10):6829–6838. https://doi.org/10.1167/iovs.14-14744

    Article  CAS  PubMed  Google Scholar 

  55. Schaumburg CS, Siemasko KF, De Paiva CS et al (2011) Ocular surface APCs are necessary for autoreactive T cell-mediated experimental autoimmune lacrimal keratoconjunctivitis. J Immunol 187(7):3653–3662. https://doi.org/10.4049/jimmunol.1101442

    Article  CAS  PubMed  Google Scholar 

  56. Goyal S, Chauhan SK, El Annan J, Nallasamy N, Zhang Q, Dana R (2010) Evidence of corneal lymphangiogenesis in dry eye disease: a potential link to adaptive immunity? Arch Ophthalmol 128(7):819–824. https://doi.org/10.1001/archophthalmol.2010.124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee HS, Amouzegar A, Dana R (2017) Kinetics of corneal antigen presenting cells in experimental dry eye disease. BMJ Open Ophthalmol. 1(1):e000078. https://doi.org/10.1136/bmjophth-2017-000078

    Article  PubMed  PubMed Central  Google Scholar 

  58. Villani E, Magnani F, Viola F et al (2013) In vivo confocal evaluation of the ocular surface morpho-functional unit in dry eye. Optom Vis Sci 90(6):576–586. https://doi.org/10.1097/OPX.0b013e318294c184

    Article  PubMed  Google Scholar 

  59. Marsovszky L, Németh J, Resch MD et al (2014) Corneal Langerhans cell and dry eye examinations in ankylosing spondylitis. Innate Immun 20(5):471–477. https://doi.org/10.1177/1753425913498912

    Article  CAS  PubMed  Google Scholar 

  60. Marsovszky L, Resch MD, Németh J et al (2013) In vivo confocal microscopic evaluation of corneal Langerhans cell density, and distribution and evaluation of dry eye in rheumatoid arthritis. Innate Immun 19(4):348–354. https://doi.org/10.1177/1753425912461677

    Article  CAS  PubMed  Google Scholar 

  61. Maruoka S, Inaba M, Ogata N (2018) Activation of dendritic cells in dry eye mouse model. Invest Ophthalmol Vis Sci. 59(8):3269–3277. https://doi.org/10.1167/iovs.17-22550

    Article  CAS  PubMed  Google Scholar 

  62. Dohlman TH, Ding J, Dana R, Chauhan SK (2017) T Cell-Derived granulocyte-macrophage colony-stimulating factor contributes to dry eye disease pathogenesis by promoting CD11b+ myeloid cell maturation and migration. Invest Ophthalmol Vis Sci 58(2):1330–1336. https://doi.org/10.1167/iovs.16-20789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stevenson W, Chauhan SK, Dana R (2012) Dry eye disease: an immune-mediated ocular surface disorder. Arch Ophthalmol 130(1):90–100. https://doi.org/10.1001/archophthalmol.2011.364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pflugfelder SC, Bian F, Gumus K, Farley W, Stern ME, De Paiva CS (2018) Severity of Sjögrens syndrome keratoconjunctivitis sicca increases with increased percentage of conjunctival antigen-presenting cells. Int J Mol Sci. https://doi.org/10.3390/ijms19092760

    Article  PubMed  PubMed Central  Google Scholar 

  65. Contreras-Ruiz L, Mir FA, Turpie B, Masli S (2017) Thrombospondin-derived peptide attenuates Sjögrens syndrome-associated ocular surface inflammation in mice. Clin Exp Immunol 188(1):86–95. https://doi.org/10.1111/cei.12919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tan X, Chen Y, Foulsham W, Amouzegar A, Inomata T, Liu Y, Chauhan SK, Dana R (2018) The immunoregulatory role of corneal epithelium-derived thrombospondin-1 in dry eye disease. Ocul Surf 16(4):470–477. https://doi.org/10.1016/j.jtos.2018.07.005

    Article  PubMed  PubMed Central  Google Scholar 

  67. Soriano-Romaní L, Contreras-Ruiz L, López-García A, Diebold Y, Masli S (2018) Topical application of TGF-β-activating peptide, KRFK, prevents inflammatory manifestations in the TSP-1-deficient mouse model of chronic ocular inflammation. Int J Mol Sci. https://doi.org/10.3390/ijms20010009

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tong L, Lan W, Lim RR, Chaurasia SS (2014) S100A proteins as molecular targets in the ocular surface inflammatory diseases. Ocul Surf 12(1):23–31. https://doi.org/10.1016/j.jtos.2013.10.001

    Article  PubMed  Google Scholar 

  69. Ko BY, Xiao Y, Barbosa FL, de Paiva CS (2018) Pflugfelder SC Goblet cell loss abrogates ocular surface immune tolerance. JCI Insight. https://doi.org/10.1172/jci.insight.98222

    Article  PubMed  PubMed Central  Google Scholar 

  70. Feng QY, Hu ZX, Song XL, Pan HW (2017) Aberrant expression of genes and proteins in pterygium and their implications in the pathogenesis. Int J Ophthalmol. 10(6):973–981. https://doi.org/10.18240/ijo.2017.06.22

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wang Y, Zhao F, Zhu W, Xu J, Zheng T, Sun X (2010) In vivo confocal microscopic evaluation of morphologic changes and dendritic cell distribution in pterygium. Am J Ophthalmol 150(5):650–655. https://doi.org/10.1016/j.ajo.2010.05.025

    Article  PubMed  Google Scholar 

  72. Lluch S, Julio G, Pujol P, Merindano D (2016) What biomarkers explain about pterygium OCT pattern. Graefes Arch Clin Exp Ophthalmol 254(1):143–148. https://doi.org/10.1007/s00417-015-3186-9

    Article  CAS  PubMed  Google Scholar 

  73. Notara M, Lentzsch A, Coroneo M, Cursiefen C (2018) The role of limbal epithelial stem cells in regulating corneal (Lymph) angiogenic privilege and the micromilieu of the limbal niche following UV exposure. Stem Cells Int 2018(8):8620172. https://doi.org/10.1155/2018/8620172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Papadia M, Barabino S, Valente C, Rolando M (2008) Anatomical and immunological changes of the cornea in patients with pterygium. Curr Eye Res 33(5):429–434. https://doi.org/10.1080/02713680802130354

    Article  PubMed  Google Scholar 

  75. Zhivov A, Beck R, Guthoff RF (2009) Corneal and conjunctival findings after mitomycin C application in pterygium surgery: an in-vivo confocal microscopy study. Acta Ophthalmol 87(2):166–172. https://doi.org/10.1111/j.1755-3768.2008.01198.x

    Article  PubMed  Google Scholar 

  76. Beden Ü, Irkeç M, Orhan D, Orhan M (2003) The roles of T-lymphocyte subpopulations (CD4 and CD8), intercellular adhesion molecule-1 (ICAM-1), HLA-DR receptor, and mast cells in etiopathogenesis of pterygium. Ocul Immunol Inflamm 11(2):115–122

    Article  CAS  Google Scholar 

  77. Ribatti D, Nico B, Maxia C et al (2007) Neovascularization and mast cells with tryptase activity increase simultaneously in human pterygium. J Cell Mol Med 11(3):585–589. https://doi.org/10.1111/j.1582-4934.2007.00050.x

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wilson SE, Mohan RR, Mohan RR, Ambrosio R Jr, Hong J, Lee J (2001) The corneal wound healing response: cytokine-mediated interaction of the epithelium, stroma, and inflammatory cells. Prog Retin Eye Res 20(5):625–637

    Article  CAS  Google Scholar 

  79. Di Girolamo N, Chui J, Coroneo MT, Wakefield D (2004) Pathogenesis of pterygia: role of cytokines, growth factors, and matrix metalloproteinases. Prog Retin Eye Res 23(2):195–228. https://doi.org/10.1016/j.preteyeres.2004.02.002

    Article  CAS  PubMed  Google Scholar 

  80. Lopez MJ, Seyed-Razavi Y, Jamali A, Harris DL, Hamrah P (2018) The chemokine receptor CXCR4 mediates recruitment of CD11c+ conventional dendritic cells into the inflamed murine cornea. Invest Ophthalmol Vis Sci 59(13):5671–5681. https://doi.org/10.1167/iovs.18-25084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ueta M, Hamuro J, Ohsako S, Kinoshita S (2018) Distinctly regulated functions and mobilization of CD11c-positive cells elicited by TLR3- and IPS-1 signaling in the cornea. Immunol Lett 17(206):49–53. https://doi.org/10.1016/j.imlet.2018.12.004

    Article  CAS  Google Scholar 

  82. Koujah L, Suryawanshi RK, Shukla D (2018) Pathological processes activated by herpes simplex virus-1 (HSV-1) infection in the cornea. Cell Mol Life Sci. https://doi.org/10.1007/s00018-018-2938-1

    Article  PubMed  PubMed Central  Google Scholar 

  83. Agelidis AM, Hadigal SR, Jaishankar D, Shukla D (2017) Viral activation of heparanase drives pathogenesis of herpes simplex virus-1. Cell Rep 20(2):439–450. https://doi.org/10.1016/j.celrep.2017.06.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Khan AA, Srivastava R, Vahed H, Roy S, Walia SS, Kim GJ, Fouladi MA, Yamada T, Ly VT, Lam C, Lou A, Nguyen V, Boldbaatar U, Geertsema R, Fraser NW, BenMohamed L (2018) Human asymptomatic epitope peptide/CXCL10-based prime/pull vaccine induces herpes simplex virus-specific gamma interferon-positive CD107+ CD8+ T cells that infiltrate the corneas and trigeminal ganglia of humanized HLA transgenic rabbits and protect against ocular herpes challenge. J Virol. https://doi.org/10.1128/jvi.00535-18

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We have no acknowledgements to be mentioned.

Funding

All authors declare that they received no funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Kalogeropoulos.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Human and animal rights

This study does not involve interventions on humans or experimental studies on animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalogeropoulos, D., Papoudou-Bai, A., Lane, M. et al. Antigen-presenting cells in ocular surface diseases. Int Ophthalmol 40, 1603–1618 (2020). https://doi.org/10.1007/s10792-020-01329-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-020-01329-0

Keywords

Navigation