Skip to main content
Log in

Single-Mode Photon-Addition for the Two-Mode Squeezed State and its Statistical Properties

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We construct a new optical field, denoted as \(\rho _{0}\equiv \left \vert \psi \right \rangle _{ll}\left \langle \psi \right \vert \), \(\left \vert \psi \right \rangle _{l}=\frac {\text {sech}^{l}\lambda }{\sqrt {l!} }b^{\dagger l}S_{2}\left \vert 00\right \rangle \), by adding single-mode l-photon to a two-mode squeezed vacuum state, where \(S_{2}=\exp \left [ \lambda \left (a^{\dagger }b^{\dagger }-ab\right ) \right ] \) is the two-mode squeezing operator. We find that its partial trace over b-mode will lead to a negative-binomial optical field in a-mode characteristic of l, which exhibits quantum entanglement. The photon number fluctuation of the new optical field both in a-mode and in b-mode is investigated. We employ the summation method within ordered product of operators to proceed our discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zavatta, A., Viciani, S., Bellini, M.: Quantum-to-classical transition with single-photon-added coherent states of light. Science 306, 660–662 (2004)

    Article  ADS  Google Scholar 

  2. Zavatta, A., Parigi, V., Bellini, M.: Experimental nonclassicality of single-photon-added thermal light states. Phys. Rev. A 75, 052106 (2007)

    Article  ADS  Google Scholar 

  3. Biswas, A., Agarwal, G.S.: Nonclassicality and decoherence of photon-subtracted squeezed states. Phys. Rev. A 75, 032104 (2007)

    Article  ADS  Google Scholar 

  4. Hu, L.Y., Fan, H.Y.: Statistical properties of photon subtracted squeezed vacuum in thermal environment. J. Opt. Soc. Am. B 25, 1955–1964 (2008)

    Article  ADS  Google Scholar 

  5. Hu, L.Y., Xu, X.X., Wang, Z.S., Xu, X.F.: Photon-subtracted squeezed thermal state: nonclassicality and decoherence. Phys. Rev. A 82, 043842 (2010)

    Article  ADS  Google Scholar 

  6. Hu, L.Y., Xu, X.X., Guo, Q., Fan, H.Y.: arXiv:quant-ph/1008.5253v1 (2010)

  7. Fan, H.Y., Lu, H.L., Fan, Y.: Ann. Phys. 321(2), 480–494 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  8. Fan, H.Y., Klauder, J.R.: Phys. Rev. A 49, 704 (1994)

    Article  ADS  Google Scholar 

  9. Fan, H.Y., Vanderlinde, J.: Phys. Rev. A 39, 2987 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  10. Fan, H.Y., Zaidi, H.R., Klauder, J.R.: Phys. Rev. D 35, 1831 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  11. Fan, H.Y., Lu, H.L., Fan, Y.: Ann. Phys. 321(2), 480–494 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  12. Fan, H.Y., Wu, Z.: Acta. Phys. Sin. 64, 080303 (2015)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Feng Wu.

Additional information

Granted by National Natural Science Foundation of China, Grant No. 11574295;the Project of Anhui Province for College Excellent Young Talents under Grant No.gxyqZD2016368 and No.gxyqZD2016287

Appendix

Appendix

The second-order degree of coherence is defined as

$$ g^{\left( 2\right) }\equiv\frac{{~}_{{~}_{l}}\left\langle \psi\right\vert \left( a^{\dagger}a\right)^{2}\left\vert \psi\right\rangle_{l}-{~}_{{~}_{l}}\left\langle \psi\right\vert a^{\dagger}a\left\vert \psi\right\rangle_{l}}{\left( {~}_{{~}_{l} }\left\langle \psi\left\vert a^{\dagger}a\right\vert \psi\right\rangle_{l}\right)^{2}} $$
(45)

Since

$$\begin{array}{@{}rcl@{}} \left( a^{\dagger}a\right)^{2} & =&a^{\dagger}a~a^{\dagger}a~\\ & =&a^{\dagger}\left( a^{\dagger}a+1~\right) a~\\ & =&a^{\dagger2}a^{2}+a^{\dagger}a \end{array} $$
(46)

then

$$ {~}_{l}\left\langle \psi\right\vert \left( a^{\dagger}a\right)^{2}\left\vert \psi\right\rangle_{l}-{~}_{{~}_{l}}\left\langle \psi\right\vert a^{\dagger }a\left\vert \psi\right\rangle_{l}={~}_{{~}_{l}}\left\langle \psi\right\vert a^{\dagger2}a^{2}\left\vert \psi\right\rangle_{l} $$
(47)

Using (47), we can convert (45) into

$$\begin{array}{@{}rcl@{}} g^{\left( 2\right) } & =&\frac{{~}_{l}\left\langle \psi\right\vert a^{\dagger2}a^{2}\left\vert \psi\right\rangle_{l}}{\left( {~}_{l}\left\langle \psi\left\vert a^{\dagger}a\right\vert \psi\right\rangle_{l}\right)^{2} }\\ & =&\frac{\left( \frac{1-\gamma}{\gamma}\right)^{2}\left( l+1\right) \left( l+2\right) }{\left[ \frac{l+1}{\gamma}\left( 1-\gamma\right) \right]^{2}}\\ & =&\frac{\left( l+1\right) \left( l+2\right) }{\left( l+1\right)^{2} }\\ & =&\frac{l+2}{l+1}>1 \end{array} $$
(48)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, WF., Fan, HY. Single-Mode Photon-Addition for the Two-Mode Squeezed State and its Statistical Properties. Int J Theor Phys 56, 2651–2658 (2017). https://doi.org/10.1007/s10773-017-3421-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3421-8

Keywords

Navigation