Skip to main content
Log in

Vacuum Stability of the Wrong Sign (−ϕ 6) Scalar Field Theory

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We apply the effective potential method to study the vacuum stability of the bounded from above (−ϕ 6) (unstable) quantum field potential. The stability (∂E/∂b = 0) and the mass renormalization ( 2 E/∂b 2 = M 2) conditions force the effective potential of this theory to be bounded from below (stable). Since bounded from below potentials are always associated with localized wave functions, the algorithm we use replaces the boundary condition applied to the wave functions in the complex contour method by two stability conditions on the effective potential obtained. To test the validity of our calculations, we show that our variational predictions can reproduce exactly the results in the literature for the \(\mathcal {PT}\)-symmetric ϕ 4 theory. We then extend the applications of the algorithm to the unstudied stability problem of the bounded from above (−ϕ 6) scalar field theory where classical analysis prohibits the existence of a stable spectrum. Concerning this, we calculated the effective potential up to first order in the couplings in d space-time dimensions. We find that a Hermitian effective theory is instable while a non-Hermitian but \(\mathcal {PT}\)-symmetric effective theory characterized by a pure imaginary vacuum condensate is stable (bounded from below) which is against the classical predictions of the instability of the theory. We assert that the work presented here represents the first calculations that advocates the stability of the (−ϕ 6) scalar potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bender, C., Boettcher, S.: Phys. Rev. Lett. 80, 5243–5246 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Shalaby, A.M., Al-Thoyaib, S.S.: Phys. Rev. D 82, 085013 (2010)

    Article  ADS  Google Scholar 

  3. Shalaby, A.M.: Phys. Rev. D 80, 025006 (2009)

    Article  ADS  Google Scholar 

  4. Shalaby, A.: Phys. Rev. D 79, 065017 (2009)

    Article  ADS  Google Scholar 

  5. Bender, C.M., Chen, J.-H., Milton, K.A.: J. Phys. A 39, 1657–1668 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Shalaby, A.: Mod. Int. J. Phys. A 26(17), 2913–2925 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Mostafazadeh, A.: J. Math. Phys. 43, 3944 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Mostafazadeh, A.: J. Math. Phys. 43, 205 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Bender, C.M., Mannheim, P.D.: Phys. Rev. Lett. 100, 110402 (2008)

    Article  ADS  Google Scholar 

  10. Bender, C.M., Brandt, S. F., Chen, J.-H., Wang, Q.: Phys. Rev. D 71, 025014 (2005)

    Article  ADS  Google Scholar 

  11. Symanzik, K.: Commun. Math. Phys. 45, 79 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  12. Bender, C.M., Milton, K.A., Savage, V.M.: Phys. Rev. D 62, 85001 (2000)

    Article  ADS  Google Scholar 

  13. Kleefeld, F.: J. Phys. A: Math. Gen. 39, L9–L15 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Bender, C.M., Brody, D.C., Jones, H.F.: Phys. Rev. Lett. 93, 251601 (2004). Phys. Rev. D 70, 025001

    Article  ADS  MathSciNet  Google Scholar 

  15. Swanson, E.S.: AIP Conf. Proc. 1296, 75–121 (2010)

    Article  ADS  Google Scholar 

  16. Jones, H.F., Rivers, R.J.: Phys. Rev. D 74, 125022 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. Jones, H.F., Rivers, R.J.: Phys. Lett. A 373, 3304–3308 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Jones, H.F.: Int. J. Theor. Phys. 50, 1071–1080 (2011)

    Article  MATH  Google Scholar 

  19. Jones, H. F., Mateo, J.: Phys. Rev. D 73, 085002 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  20. Peskin, M.E., Schroeder, D. V.: An Introduction To Quantum Field Theory (Addison-Wesley Advanced Book Program) (1995)

  21. Coleman, S.: Phys. Rev. D 11, 2088 (1975)

    Article  ADS  Google Scholar 

  22. Din, A.M.: Phys. Rev. D 4, 995 (1971)

    Article  ADS  Google Scholar 

  23. Lu, W.-F.: Mod. Phys. Lett. A 14, 1421–1430 (1999)

    Article  ADS  Google Scholar 

  24. Dineykhan, M., Efimov, G. V., Ganbold, G., Nedelko, S. N.: Lect. Notes Phys. M26, 1 (1995)

    Google Scholar 

  25. Chang, S. J.: Phys. Rev. D 12, 1071 (1975)

    Article  ADS  Google Scholar 

  26. Magruder, S. F.: Phys. Rev. D 14, 1602 (1976)

    Article  ADS  Google Scholar 

  27. Asorey, M., Esteve, J.G., Falceto, F., Salas, J.: Phys. Rev. B 52, 9151–9154 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abouzeid M. Shalaby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalaby, A.M. Vacuum Stability of the Wrong Sign (−ϕ 6) Scalar Field Theory. Int J Theor Phys 53, 2944–2958 (2014). https://doi.org/10.1007/s10773-014-2092-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2092-y

Keywords

Navigation