Skip to main content
Log in

Impact of Crystallinity on Relationship Between Electrical and Thermal Conductivities in Bulk Graphitic Materials

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Highly conductive graphitic materials are of interest in a wide range of industrial applications. The direct measurement of high thermal conductivity values is difficult due to issues with inhomogeneity and thermal response acquisition. Electrical conductivity, on the other hand, can be conveniently and accurately measured. Based on theory and experimental measurements on graphene, it is evident that both quantities depend on the crystalline perfection of the material. This communication provides a robust correlation between thermal and electrical conductivity, for bulk graphitic materials that have chemically bonded structures. The relationship covers a very wide range of materials with varying degrees of crystallinity. Given the high material variability a reasonable correlation is found with a 0.91 coefficient of determination and a 95 % confidence interval of 7.5 %, which is suitable for the quick estimation of thermal conductivity. It was further found that variations in the correlation are discernible between measurements in-plane and across plane, with isotropic materials falling halfway between the two. With further development, this approach can be used to provide a rapid and indirect measurement of high thermal conductivity values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. A.A. Balandin, Nano Lett. 8, 902–907 (2008)

    Article  ADS  Google Scholar 

  2. H. Badenhorst, Carbon 99, 17–25 (2016)

    Article  Google Scholar 

  3. N. Wang, Small 14, 1801346 (2018)

    Article  Google Scholar 

  4. L. Dong et al., Chem. Soc. Rev. 46, 7306–7316 (2017)

    Article  Google Scholar 

  5. N. Nishiki, IEEJ Trans. Fundam. Mater. 123, 1115–1123 (2003)

    Article  Google Scholar 

  6. A.L. Moore, Mater. Today 17, 163–174 (2014)

    Article  Google Scholar 

  7. H. Badenhorst, J. Energy Storage 6, 32–39 (2016)

    Article  Google Scholar 

  8. ASTM C714-17 (ASTM International, West Conshohocken, PA, 2017)

  9. M.A. Worsley, J. Am. Chem. Soc. 132, 14067–14069 (2010)

    Article  Google Scholar 

  10. R. Franz, Ann. Phys. 165, 497–531 (1853)

    Article  Google Scholar 

  11. R.A. Buerschaper, J. Appl. Phys. 15, 452–454 (1944)

    Article  ADS  Google Scholar 

  12. S. Lee, Science 355, 371–374 (2017)

    Article  ADS  Google Scholar 

  13. M. Jonson, Phys. Rev. B 21, 4223 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  14. L. Lindsay, Phys. Rev. B 82, 115427 (2010)

    Article  ADS  Google Scholar 

  15. P.G. Klemens, Int. J. Thermophys. 22, 265–275 (2001)

    Article  Google Scholar 

  16. Badenhorst H, 2018. A review of the application of carbon materials in solar thermal energy storage. Solar Energy

  17. A.W. Cummings, Adv. Mater. 26, 5079–5094 (2014)

    Article  Google Scholar 

  18. T. Ma, Nat. Commun. 8, 14486 (2017)

    Article  ADS  Google Scholar 

  19. H. Badenhorst, Carbon 66, 674–690 (2014)

    Article  Google Scholar 

  20. C. Uher, Thermal Conductivity of Pure Metals and Alloys (Springer, Berlin, 1991), pp. 426–429

    Book  Google Scholar 

  21. J. Heremans, Phys. Rev. B 32, 1981 (1985)

    Article  ADS  Google Scholar 

  22. H. Badenhorst, J. Nucl. Mater. 442, 75–82 (2013)

    Article  ADS  Google Scholar 

  23. H. Badenhorst, Trans. R. Soc. S. Afr. 72, 294–300 (2017)

    Article  Google Scholar 

  24. H. Badenhorst, Thermochim. Acta 562, 1–10 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Badenhorst.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badenhorst, H. Impact of Crystallinity on Relationship Between Electrical and Thermal Conductivities in Bulk Graphitic Materials. Int J Thermophys 40, 52 (2019). https://doi.org/10.1007/s10765-019-2517-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-019-2517-1

Keywords

Navigation