Skip to main content
Log in

Synchrotron-Based Temperature-Dependent Terahertz and Far-Infrared Spectroscopy of Aerographite and Single-Walled Carbon Nanotube Aerogel

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Synchrotron-based terahertz and far-infrared spectra of aerographite and single-walled carbon nanotube aerogel were acquired using the terahertz/far-infrared beamline at the Australian Synchrotron in the frequency range of 7–1000 cm−1 and temperature range of 6–300 K. We observe infrared absorption features at ~ 35, ~ 79, and ~ 889 cm−1 for aerographite and ~ 35, ~ 79, ~ 685, ~ 923, and ~ 950 cm−1 for single-walled carbon nanotube aerogel. Temperature dependences of the terahertz and far-infrared spectra reveal frequency shifts of the infrared absorption peaks with temperature. The “red-shift” behavior of peak positions (~ 35 and ~ 79 cm−1) can be attributed to the anharmonicity of vibrational potentials. The ~ 35 cm−1 mode is expected to be only Raman active. Its appearance in our infrared spectra suggests that structural disorder in our samples relaxed this selection rule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. A. W. P. Fung, Z. H. Wang, K. Lu, M. S. Dresselhaus, R. W. Pekala, Characterization of carbon aerogels by transport measurements, J. Mater. Res. 8 (1993).

  2. S. Chandrasekaran, P. G. Campbell, T. F. Baumann, M. A. Worsley, Carbon aerogel evolution: allotrope, graphene-inspired, and 3D-printed aerogels, J. Mater. Res. 32 (2017).

  3. K. L. Van Aken, C. R. Pérez, Y. Oh, M. Beidaghi, Y. J. Jeong, M. F. Islam, Y. Gogotsi, High-rate capacitive performance of single-walled carbon nanotube aerogels, Nano Energy, 15 (2015).

  4. T. Haldar, U. Kumar, B. C. Yadav, V. V. R. K. Kumar, Tunable negative permittivity of Bi2O-SiO2/MWCNT glass-nanocomposites at radio frequency region, J. Mater. Sci.: Mater. Electron. 31 (2020).

  5. T. Haldar, U. Kumar, B. C. Yadav, V. V. R. K. Kumar, Synthesis and characterization of catalytic CVD growth pristine and functionalized MWCNT, J. Appl. Phys. 130 (2021) 075106.

    Article  Google Scholar 

  6. T. Haldar, U. Kumar, B. C. Yadav, V. V. R. K. Kumar, Effect of direct–current biasing on the adjustable radio-frequency negative permittivity characteristics of Bi2SiO5/multiwall carbon nanotube metacomposites, Ceram. Int. 47 (2021).

  7. H. Zhang, Q. Yan, J. Horvat, R. A. Lewis, Piezoresistive and electrical properties of a catecholic amino acid-polyacrylamide single-walled carbon nanotube hydrogel hybrid network, ACS Appl. Polym. Mater. 3 (2021).

  8. M. Mecklenburg, A. Schuchardt, Y. K. Mishra, S. Kaps, R. Adelung, A. Lotnyk, L. Kienle, K. Schulte, Aerographite: ultralightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance, Adv. Mater. 24 (2012).

  9. S. Garlof, M. Mecklenburg, D. Smazna, Y. K. Mishra, R. Adelung, K. Schulte, B. Fiedler, 3D carbon networks and their polymer composites: fabrication and electromechanical investigation of neat aerographite and aerographite-based PNCs under compressive load, Carbon, 111 (2017).

  10. M. B. Bryning, D. E. Milkie, M. F. Islam, L. A. Hough, J. M. Kikkawa, A. G. Yodh, Carbon nanotube aerogels, Adv. Mat. 19 (2007).

  11. S. R. Meier. Reflectance and scattering properties of highly absorbing black appliqués over a broadband spectral region, Appl. Opt. 40 (2000).

  12. P. Chamorro-Posada, J. Vázquez-Cabo, Ó. Rubiños-López,; J. Martín-Gil, S. Hernández-Navarro, P. Martín-Ramos, F. M. Sánchez-Arévalo, A. V. Tamashausky, C. Merino-Sánchez, R. C. Dante, THz TDS study of several sp2 carbon materials: graphite, needle coke and graphene oxides, Carbon, 98 (2016).

  13. T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, M. Wolf, Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite, Phys. Rev. Lett. 95 (2005) 187403.

  14. M. Scheuch, T. Kampfrath, M. Wolf, K. von Volkmann, C. Frischkorn, L. Perfetti, Temperature dependence of ultrafast phonon dynamics in graphite, Appl. Phys. Lett. 99 (2011) 211908.

    Article  Google Scholar 

  15. R. A. Friedel, G. L. Carlson, Infrared spectra of ground graphite, J. Phys. Chem. 75 (1971).

  16. R. J. Nemanich, G. Lucovsky, S. A. Solin, Infrared active optical vibrations in graphite, Solid State Commun. 23 (1977).

  17. G. S. Jeon, G. D. Mahan, Microscopic origin of infrared activity of graphite, Phys. Rev. B 71 (2005) 184306.

    Article  Google Scholar 

  18. M. Manzardo, E. Cappelluti, E. van. Heumen, A. B. Kuzmenko, Infrared phonon activity in pristine graphite, Phys. Rev. B 86 (2012) 054302.

    Article  Google Scholar 

  19. V. Tucureanu, A. Matei, A. M. Avram, FTIR spectroscopy for carbon family study, Crit. Rev. Anal. Chem. 46 (2016).

  20. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamarás, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A. G. Rinzler, Transparent, conductive carbon nanotube films, Science, 305 (2004).

  21. V. C. Long, J. L. Musfeldt, K. Kamarás, A. Schilder, W. Schütz, Far-infrared study of the Jahn-Teller-distorted C60 monoanion in C60-tetraphenylphosphoniumiodide, Phys. Rev. B 58 (21) (1998).

  22. M. T. Islam, R. M. Trevoraha, D. R. T. Appadoo, S. P. Best, C. T. Chantlera, Methods and methodology for FTIR spectral correction of channel spectra and uncertainty, applied to ferrocene, Spectrochimica Acta Part A: Mol. and Biomol. Spectrosc. 177 (2017).

  23. P.-H. Tan, W.-P. Han, W.-J. Zhao, Z.-H. Wu, K. Chang, H. Wang, Y.-F. Wang; N. Bonini, N. Marzari, N. Pugno, G. Savini, A. Lombardo, A. C. Ferrari, The shear mode of multilayer graphene, Nat. Mater. 11 (2012).

  24. C. Cong, T. Yu, Enhanced ultra-low-frequency interlayer shear modes in folded graphene layers, Nat. Commun. 5 (2014) 4709.

    Article  Google Scholar 

  25. J.-K. Lee, K. P. S. S. Hembram, Y. Park, S.-G. Lee, J.-G. Kim, W. Lee, D. J. Moon, Raman radial mode revealed from curved graphene, J. Phys. Chem. Lett. 8 (2017).

  26. H. Zhang, J. Horvat, R. A. Lewis, R. Adelung, B. Fiedler, Y. K. Mishra, Aerographite phonon density of states affects double resonant Raman scattering, J. Appl. Phys. 128 (2020) 195101.

    Article  Google Scholar 

  27. C. Branca, F. Frusteri, V. Magazù, A. Mangione, Characterization of carbon nanotubes by TEM and infrared spectroscopy, J. Phys. Chem. B 108 (2004).

  28. H. Hoshina, Y. Morisawa, H. Sato, H. Minamide, I. Noda, Y. Ozaki, C. Otani, Polarization and temperature dependent spectra of poly(3-hydroxyalkanoate)s measured at terahertz frequencies, Phys. Chem. Chem. Phys. 13 (2011).

  29. Y. C. Shen, P. C. Upadhya, E. H. Linfield, A. G. Davies, Temperature dependent low-frequency vibrational spectra of purine and adenine, Appl. Phys. Lett. 82 (2003).

  30. M. D. King, W. D. Buchanan, T. M. Korter, Investigating the anharmonicity of lattice vibrations in water-containing molecular crystals through the terahertz spectroscopy of L-serine monohydrate, J. Phys. Chem. A 114 (2010).

  31. M. Fox. Optical Properties of Solids, Oxford University Press: Oxford, UK, 2001.

    Google Scholar 

  32. S. Nudelman, S. S. Mitra. Optical Properties of Solids, Plenum Press: New York, NY, USA, 1969.

  33. M. S. Dresselhaus, P. C. Eklund, Phonons in carbon nanotubes, Adv. Phys. 49 (2000).

  34. P. C. Eklund, J. M. Holden, R. A. Jishi, Vibrational modes of carbon nanotubes: spectroscopy and theory, Carbon, 33 (1995).

  35. C. Zhang, D. M. Dabbs, L.-M. Liu, I. A. Aksay, R. Car, A. Salon, Combined effects of functional groups, lattice defects, and edges in the infrared spectra of graphene oxide, J. Phys. Chem. C 119 (2015).

  36. U. Kulhmann, H. Jantolljak, N. Pfänder, P. Bernier, C. Journet, C. Thomsen, Infrared active phonons in single-walled carbon nanotubes, Chem. Phys. Lett. 294 (1998).

  37. U. J. Kim, X. M. Liu, C. A. Furtado, G. Chen, R. Saito, J. Jiang, M. S. Dresselhaus, P. C. Eklund, Infrared-active vibrational modes of single-walled carbon nanotubes, Phys. Rev. Lett. 95 (2005) 157402.

    Article  Google Scholar 

  38. J. L. Bantignies, J. L. Sauvajol, A. Rahmani, E. Flahaut, Infrared-active phonons in carbon nanotubes, Phys. Rev. B 74 (2006) 195425.

    Article  Google Scholar 

  39. K. Sbai, A. Rahmani, H. Chadli, J. L. Bantignies, P. Hermet, J. L. Sauvajol, Infrared spectroscopy of single-walled carbon nanotubes, J. Phys. Chem. B 110 (2006).

  40. S. E. Rodil. Infrared spectra of amorphous carbon-based materials, Diam. Relat. Mater. 14 (2005).

  41. C. Fantini, A. Jorio, M. Souza, R. Saito, Ge. G. Samsonidze, M. S. Dresselhaus, M. A. Pimenta, Steplike dispersion of the intermediate-frequency Raman modes in semiconducting and metallic carbon nanotubes, Phys. Rev. B 72 (2005) 085446.

    Article  Google Scholar 

  42. V. Skákalová, J. Maultzsch, Z. Osváth, L. P. Biró, S. Roth, Intermediate frequency modes in Raman spectra of Ar+-irradiated single-walled carbon nanotubes, Phys. Stat. Sol. 1 (2007).

  43. D. K. Singh, P. K. Iyer, P. K. Giri, Distinguishing defect induced intermediate frequency modes from combination modes in the Raman spectrum of single walled carbon nanotubes, J. Appl. Phys. 111 (2012) 064304.

    Article  Google Scholar 

  44. Á. Pekker, Á. Botos, Á. Rusznyák, J. Koltai, J. Kürti, K. Kamarás, Vibrational signatures in the infrared spectra of single- and double-walled carbon nanotubes and their diameter dependence, J. Phys. Chem. Lett. 2 (2011).

  45. A. Ugawa, A. G. Rinzler, D. B. Tanner, Far-infrared gaps in single-wall carbon nanotubes, Phys. Rev. B 60 (1999) R11305(R).

    Article  Google Scholar 

  46. J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, P. Ordejόn, Phonon dispersion of graphite, Phys. Rev. Lett. 92, 075501 (2004).

    Article  Google Scholar 

  47. L. Wirtz, A. Rubio, The phonon dispersion of graphite revisited, Solid State Commun. 131, 141 (2004).

    Article  Google Scholar 

  48. M. Mohr, J. Maultzsch, E. Dobardžić, S. Reich, I. Milošević, M. Damnjanović, A. Bosak, M. Krisch, C. Thomsen, Phonon dispersion of graphite by inelastic X-ray scattering, Phys. Rev. B 76, 035439 (2007).

    Article  Google Scholar 

  49. S. Reich, C. Thornsen, J. Maultzsch, Carbon Nanotubes-Basic Concepts and Physical Properties, Wiley-VCH Verlag, Weinheim, Germany, 2004.

    Google Scholar 

  50. O. E. Alon, Number of Raman- and infrared-active vibrations in single-walled carbon nanotubes, Phys. Rev. B 63, 201403R (2001).

    Article  Google Scholar 

  51. O. E. Alon, From spatial symmetry to vibrational spectroscopy of single-walled carbon nanotubes, J. Phys.: Condens. Matter 15, S2489 (2003).

    Article  Google Scholar 

  52. E. B. Barros, A. Jorio, G. G. Samsonidze, R. B. Capaz, A. G. Souza Filho, J. M. Filho, G. Dresselhaus, M. S. Dresselhaus, Review on the symmetry-related properties of carbon nanotubes, Phys. Rep. 431, 261 (2006).

    Article  Google Scholar 

  53. M. S. Dresselhaus, A. Jorio, A. G. Souza Filho, R. Saito, Defect characterization in graphene and carbon nanotubes using Raman spectroscopy, Phil. Trans. R. Soc. A 368, 5355 (2010).

    Article  Google Scholar 

  54. R. Al-Jishi, G. Dresselhaus, Lattice-dynamical model for graphite, Phys. Rev. B 26, 4514 (1982).

    Article  Google Scholar 

  55. P. Lespade, R. Al-Jishi, M. S. Dresselhaus, Model for Raman scattering from incompletely graphitized carbons, Carbon, 20, 427 (1982).

    Article  Google Scholar 

  56. P. V. Huong, R. Cavagnat, P. M. Ajayan, O. Stephan, Temperature-dependent vibrational spectra of carbon nanotubes, Phys. Rev. B 51, 10048 (1995).

    Article  Google Scholar 

  57. I. Chatzakis, H. Yan, D. Song, S. Berciaud, T. F. Heinz, Temperature dependence of the anharmonic decay of optical phonons in carbon nanotubes and graphite, Phys. Rev. B 83 (2011) 205411.

    Article  Google Scholar 

  58. I. Calizo, A. A. Balandin, W. Bao, F. Miao, C. N. Lau, Temperature dependence of the Raman spectra of graphene and graphene multilayers, Nano Lett. 7 (2007).

  59. M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, J. Robertson, Phonon linewidths and electron-phonon coupling in graphite and carbon nanotubes, Phys. Rev. B 73 (2006) 155426.

    Article  Google Scholar 

  60. S. Sahoo, A. P. S. Gaur, M. Ahmadi, M. J.-F. Guinel, R. S. Katiyar, Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2, J. Phys. Chem. C 117 (2013).

  61. S. Luo, X. Qi, H. Yao, X. Ren, Q. Chen, J. Zhong, Temperature-dependent Raman responses of the vapor-deposited tin selenide ultrathin flakes, J. Phys. Chem. C 121 (2017).

  62. Y. Maniwa, R. Fujiwara, H. Kira, H. Tou, H. Kataura, S. Suzuki, Y. Achiba, E. Nishibori, M. Takata, M. Sakata, A. Fujiwara, H. Suematsu, Thermal expansion of single-walled carbon nanotube (SWCNT) bundles: X-ray diffraction studies, Phys. Rev. B 64, 241402(R) (2001).

    Article  Google Scholar 

  63. Y.-K. Kwon, S. Berber, D. Tománek, Thermal contraction of carbon fullerenes and nanotubes, Phys. Rev. Lett. 92, 015901 (2004).

    Article  Google Scholar 

  64. S. Brown, J. Cao, J. L. Musfeldt, N. Dragoe, F. Cimpoesu, S. Ito, H. Takagi, R. J. Cross, Search for microscopic evidence for molecular level negative thermal expansion in fullerenes, Phys. Rev. B 73, 125446 (2006).

    Article  Google Scholar 

  65. G. D. Barrera, J. A. O. Bruno, T. H. K. Barron, N. L. Allan, Negative thermal expansion, J. Phys.: Condens. Matter 17, R217 (2005).

    Article  Google Scholar 

  66. S. Reich, C. Thomsen, Raman spectroscopy of graphite, Phil. Trans. R. Soc. Lond. A 362 (2004).

  67. H. Zhang, J. Horvat, Temperature dependence of Raman scattering spectroscopy in aerographite and single-walled carbon nanotube aerogel, Appl. Phys. A 127 (2021) 434.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Australian Nuclear Science and Technology Organisation (ANSTO) for financial support via the Australian Synchrotron Research Program (No. AS181/THz/Far/IR/13120). We are grateful to Associate Professor Joseph Horvat (University of Wollongong) and Professor Roger Lewis (University of Wollongong) for kind discussion. We thank Professor Yogendra Mishra (University of Southern Denmark and Christian-Albrecht University of Kiel) for providing the samples of aerographite and Professor Arjun Yodh (University of Pennsylvania) and Professor Mohammad Islam (Carnegie Mellon University) for the guidance in the SWCNT aerogel preparation. We also thank Dr. Dominique Appadoo (Australian Synchrotron) for the synchrotron THz and far-IR spectra assistance and Mr. Tony Romeo (UOW Electron Microscopy Centre) for the FE-SEM assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Yan, Q. Synchrotron-Based Temperature-Dependent Terahertz and Far-Infrared Spectroscopy of Aerographite and Single-Walled Carbon Nanotube Aerogel. J Infrared Milli Terahz Waves 43, 195–212 (2022). https://doi.org/10.1007/s10762-022-00841-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-022-00841-x

Keywords

Navigation