Skip to main content
Log in

Experimental Study of the Influence of Reflections from a Non-resonant Load on the Gyrotron Operation Regime

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The paper presents a series of model experiments devoted to the influence of a signal reflected from a non-resonant load on the gyrotron operation regime. The non-resonant reflector used in the experiments was in the form of an iris with remote control of its position in the waveguide. The possibility of frequency tuning in the band determined by the Q-factor of the gyrotron resonator and power modulation in a range of up to 20% was demonstrated in the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. G. Denisov, “New trends in gyrotron development,” EPJ Web Conf., vol. 149, p. 01001, 2017.

    Article  Google Scholar 

  2. T. Idehara, S. Mitsudo, and I. Ogawa, “Development of High-Frequency, Highly Stable Gyrotrons as Millimeter to Submillimeter Wave Radiation Sources,” IEEE Trans. Plasma Sci., vol. 32, no. 3, pp. 910–916, 2004.

    Article  Google Scholar 

  3. A. Fokin et al., “High-power sub-terahertz source with a record frequency stability at up to 1 Hz,” Sci. Rep., vol. 8, no. 1, p. 4317, 2018.

    Article  Google Scholar 

  4. T. M. Antonsen, S. Y. Cai, and G. S. Nusinovich, “Effect of window reflection on gyrotron operation,” Phys. Fluids B Plasma Phys., vol. 4, no. 12, pp. 4131–4139, 1992.

    Article  Google Scholar 

  5. M. Y. Glyavin and V. E. Zapevalov, “The influence of reflections on the stability of gyrotron autooscillations,” Radiophys. Quantum Electron., vol. 41, no. 10, pp. 916–922, 1998.

    Article  Google Scholar 

  6. N. S. Ginzburg, M. Y. Glyavin, N. A. Zavol’skii, V. E. Zapevalov, M. A. Moiseev, and Y. V. Novozhilova, “A proposal to use reflection with delay for achieving the self-modulation and stochastic regimes in millimeter-wave gyrotrons,” Tech. Phys. Lett., vol. 24, no. 6, pp. 436–438, 1998.

    Article  Google Scholar 

  7. M. I. Airila and P. Kall, “Effect of Reflections on Nonstationary Gyrotron Oscillations,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 2, pp. 522–528, 2004.

    Article  Google Scholar 

  8. G. M. Batanov et al., “Response of a gyrotron to small-amplitude low-frequency-modulated microwaves reflected from a plasma,” Tech. Phys., vol. 46, no. 5, pp. 595–600, 2001.

    Article  Google Scholar 

  9. N. Kharchev et al., “Influence of Controlled Reflected Power on Gyrotron Performance,” J. Infrared, Millimeter, Terahertz Waves, vol. 36, no. 12, pp. 1145–1156, 2015.

    Article  Google Scholar 

  10. G. Dammertz et al., “Recent results of the 1-MW, 140-GHz, TE 22,6-mode gyrotron,” IEEE Trans. Plasma Sci., vol. 27, no. 2, pp. 330–339, 1999.

    Article  Google Scholar 

  11. M. Y. Glyavin, G. G. Denisov, M. L. Kulygin, M. M. Mel’nikova, Y. V. Novozhilova, and N. M. Ryskin, “Gyrotron Frequency Stabilization by a Weak Reflected Wave,” Radiophys. Quantum Electron., vol. 58, no. 9, pp. 673–683, 2016.

    Article  Google Scholar 

  12. I. V. Zotova, N. S. Ginzburg, G. G. Denisov, R. M. Rozental, and A. S. Sergeev, “Frequency Locking and Stabilization Regimes in High-Power Gyrotrons with Low-Q Resonators,” Radiophys. Quantum Electron., vol. 58, no. 9, pp. 684–693, 2016.

    Article  Google Scholar 

  13. M. M. Melnikova, A. G. Rozhnev, N. M. Ryskin, A. V. Tyshkun, M. Y. Glyavin, and Y. V. Novozhilova, “Frequency Stabilization of a 0.67-THz Gyrotron by Self-Injection Locking,” IEEE Trans. Electron Devices, vol. 63, no. 3, pp. 1288–1293, 2016.

    Article  Google Scholar 

  14. Y. V. Novozhilova et al., “Gyrotron frequency stabilization under the influence of external monochromatic signal or wave reflected from the load: Review,” Izv. VUZ. Appl. Nonlinear Dyn., vol. 25, no. 1, pp. 5–34, 2017.

    Article  Google Scholar 

  15. E. M. Khutoryan, T. Idehara, M. M. Melnikova, N. M. Ryskin, and O. Dumbrajs, “Influence of Reflections on Frequency Tunability and Mode Competition in the Second-Harmonic THz Gyrotron,” J. Infrared, Millimeter, Terahertz Waves, vol. 38, no. 7, pp. 824–837, 2017.

    Article  Google Scholar 

  16. M. Y. Glyavin et al., “Frequency Stabilization in a Sub-Terahertz Gyrotron With Delayed Reflections of Output Radiation,” IEEE Trans. Plasma Sci., vol. 46, no. 7, pp. 2465–2469, 2018.

    Article  Google Scholar 

  17. Y. Bykov et al., “24–84-GHz Gyrotron Systems for Technological Microwave Applications,” IEEE Trans. Plasma Sci., vol. 32, no. 1, pp. 67–72, 2004.

    Article  MathSciNet  Google Scholar 

  18. A. V. Chirkov, G. G. Denisov, and A. N. Kuftin, “Perspective gyrotron with mode converter for co- and counter-rotation operating modes,” Appl. Phys. Lett., vol. 106, no. 26, p. 263501, 2015.

    Article  Google Scholar 

  19. G. G. Denisov, D. A. Lukovnikov, W. Kasparek, and D. Wagner, “On the resonant scattering at guide dielectric windows,” Int. J. Infrared Millimeter Waves, vol. 17, no. 5, pp. 933–945, 1996.

    Article  Google Scholar 

  20. Kane Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag., vol. 14, no. 3, pp. 302–307, 1966.

    Article  Google Scholar 

  21. S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag., vol. 44, no. 12, pp. 1630–1639, 1996.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no.18-02-00839).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Fokin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdashov, A.A., Fokin, A.P., Glyavin, M.Y. et al. Experimental Study of the Influence of Reflections from a Non-resonant Load on the Gyrotron Operation Regime. J Infrared Milli Terahz Waves 41, 164–170 (2020). https://doi.org/10.1007/s10762-019-00655-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-019-00655-4

Keywords

Navigation