Skip to main content
Log in

Temperature Dependence of THz Conductivity in Polyaniline Emeraldine Salt-Polyethylene Pellets

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Using terahertz time-domain spectroscopy, the frequency-dependent conductivities of polyaniline emeraldine salt-polyethylene (PAni-PE) pellets were measured at different mass concentrations. THz conductivities were compared to the behavior of DC conductivities measured using impedance spectroscopy. The DC conductivity behavior with mass concentration showed a low percolation threshold. The frequency-dependent behavior in the THz region follows the Mott-Davis behavior which shows stronger correlation at higher PAni concentration. At the same time, the conductivity increases exponentially with increasing PAni concentration over the frequency range studied without an apparent percolation threshold. The mechanisms in the two regions studied suggest that there is more dominant localization in the THz regime in contrast with a more dominant percolative transport in the Hz-MHz region. Temperature-dependent measurements showed a decreasing value of parameter S with increasing temperature consistent with a correlated barrier hopping model. Lastly, the parameter S increases in magnitude with a decreasing amount of PAni in the composites reflective of varying conducting and nonconducting compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. B. Brom, K. L. J. Adriaanse, P. A. A. Teunissen, J. A. Reedjik, M. A. J. Michels, J. C. M. Brokken-Zijp, Synthetic Metals84, 929–930 (1997).

    Article  Google Scholar 

  2. Z. M. Elimat, A. M. Zihlif, G. Ragosta, J. Phys. D: Appl. Phys.41 165408 (2008).

    Article  Google Scholar 

  3. W. R. Romanko, M. A. Ratner, S. H. Carr, Solid State Communications75, 25 (1990).

    Article  Google Scholar 

  4. Y.-J. Li, M. Xu, J.-Q. Feng, Z.-M. Dang, Appl. Phys. Lett.89, 072902 (2006).

    Article  Google Scholar 

  5. B. Sixou, J. P. Travers, C. Barthet, M. Guglielmi, Phys. Rev. B56, 8 (1997).

    Article  Google Scholar 

  6. P. Savi, M. Giorcelli, S. Quaranta, Appl. Sci.9, 851 (2019).

    Article  Google Scholar 

  7. A. V. Okotrub, V. V. Kubarev, M. A. Kanygin, O. V. Sedelnikova, L. G. Bulusheva, Phys. Status Solidi B248, 2568 (2011).

    Article  Google Scholar 

  8. T. J. Coutts, Thin Solid Films38, 313 (1976).

    Article  Google Scholar 

  9. X. L. Chen, M. W. Ma, Y. F. Song, T. Ji, S. W. Wu, Z. Y. Zhang, Z. Y. Zhu, Spectroscopy and Spectral Analysis31, 906 (2011).

    Google Scholar 

  10. A. Panahpour, H. Latif, Optics Communications283, 4754 (2010).

    Article  Google Scholar 

  11. H. Tao, J. J. Amsden, A. C. Strikwerda, K. B. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, F. G. Omenetto, Advanced Materials22, 3527 (2012).

    Article  Google Scholar 

  12. G. Ya. Slepyan, M. V. Shuba, S. A. Maksimenko, C. Thomsen, A. Lakhtakia, Phys. Rev. B81, 205423 (2010).

    Article  Google Scholar 

  13. C. Joerdens, S. Wietzke, M. Scheller M. Koch, Polymer Testing29, 209 (2010).

    Article  Google Scholar 

  14. C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, M. Koch, Composites Science and Technology70, 472 (2010).

    Article  Google Scholar 

  15. D. G. Cooke, Y. Lek Jun, F. C. Krebs, C. Frederik, Y. M. Lam, P. U. Jepsen, Ultrafast Phenomena in Semiconductors and Nanostructure Materials XIV Book Series: Proceedings of SPIE-The International Society for Optical Engineering 7600, H1–9 (2010).

    Google Scholar 

  16. S. Zhu, C. Xing, F. Wu, X. Zuo, Y. Zhang, C. Yu, M. Chen, W. Li, Q. Li, L. Liu, Carbon145, 259 (2019).

    Article  Google Scholar 

  17. L. Xing, H.-L. Cui, Z. X. Zhou, J. Bai, C. Du, IEEE Access7, 41737 (2019).

    Article  Google Scholar 

  18. I. Amenabar, F. Lopez, A. Mendikute, J. Infrared Milli. Terahz. Waves34, 152 (2013).

    Article  Google Scholar 

  19. D. Zhang, Polymer Testing26, 9 (2007).

    Article  Google Scholar 

  20. P. Saini, V. Choudhary, K. N. Sood and S. K. Dhawan, J. Appl. Polymer Science113, 3146 (2009).

    Article  Google Scholar 

  21. X. S. Du, M. Xiao, Y. Z. Meng, Europ. Polymer J.40, 1489 (2004).

    Article  Google Scholar 

  22. X. Wu, S. Qi, J. He, B. Chen, G. Duan, J. Polymer Research17, 751 (2010).

    Article  Google Scholar 

  23. A. K. G. Tapia and K. Tominaga, Chem. Phys. Lett.598, 39 (2014).

    Article  Google Scholar 

  24. A. K. G. Tapia and K. Tominaga, J. Infrared Milli. Terahz. Waves38, 885 (2017).

    Article  Google Scholar 

  25. R. Patil, A. S. Roy, K. R. Anilkumar, K. M. Jadhava, and S. Ekhelikar, Composites Part B: Engineering43, 3406–3411 (2012).

    Article  Google Scholar 

  26. R.K.Gupta and R.A.Singh, Journal of Non-Crystalline Solids351, 2022–2028 (2005).

    Article  Google Scholar 

  27. Y. T. Ravikiran, S. Kotresh, S. C. Vijaya Kumari, K. C. Sajjan, B. S. Khened and S. Thomas, Cellulose Chem. Technol.49, 21–28 (2015).

    Google Scholar 

  28. N. F. Mott, E. A. Davis, Electronic Processes Non-Crystalline Materials, Oxford University Press, Oxford, 1979.

    Google Scholar 

  29. R. Singh, V. Arora, R. P. Tandon, A. Mansingh, S. Chandra, Synthetic Metals104, 137 (1999).

    Article  Google Scholar 

  30. F. Zuo, M. Angelopoulos, A. G MacDiarmid, A. J. Epstein, Phys. Rev. B39, 3570 (1989).

    Article  Google Scholar 

  31. E. Nguema, V. Vigneras, J. L. Miane, P. Mounaix, Europ. Polymer J.44, 124 (2008).

    Article  Google Scholar 

  32. H. H. S. Javadi, K. R. Cromack, A. G. MacDiarmid, A. J. Epstein, Phys. Rev. B39, 6 (1989).

    Article  Google Scholar 

  33. T. Unuma, O. Kobayashi, I. F. A. Hamdany, V. Kumar, J. J. Saarinen, Cellulose26, 3247 (2019).

    Article  Google Scholar 

  34. S. Barrau, P. Demont, A. Peigney, C. Laurent, C. Lacabanne, Macromolecules36, 5187 (2003).

    Article  Google Scholar 

  35. L. J. Adriaanse, J. A. Reedijk, P. A. A. Teunissen, H. B. Brom, M. A. J. Michels, J. C. M. Brokken-Zijp, Phys. Rev. Lett.78, 1755 (1997).

    Article  Google Scholar 

Download references

Acknowledgments

AKGT would like to thank the Hitachi Scholarship Foundation for the support. Also, the authors extend their gratitude to Prof. Tomoyuki Mochida of Kobe University for the impedance analyzer.

Funding

This work was financially supported by the Hitachi Scholarship Foundation and partially supported by the Bilateral Joint Research Project (FY 2018-2019) funded by the Japan Society for the Promotion of Science and the Department of Science and Technology, Philippines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Tominaga.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tapia, A.K.G., Tominaga, K. Temperature Dependence of THz Conductivity in Polyaniline Emeraldine Salt-Polyethylene Pellets. J Infrared Milli Terahz Waves 41, 258–264 (2020). https://doi.org/10.1007/s10762-019-00650-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-019-00650-9

Keywords

Navigation