Skip to main content
Log in

New and Accurate Synthesis Formulas for Asymmetric Coplanar Stripline with an Infinitely Wide Strip

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

New and accurate synthesis formulas for the asymmetric coplanar stripline with an infinitely wide strip (ACPS-IWS) are presented. They are obtained by using a differential evolution algorithm (DEA) and particle swarm optimization (PSO) algorithm, and are useful to microwave engineers for accurately computing the physical dimensions of ACPS-IWS. The average percentage errors of the synthesis formulas found by using DEA and PSO are calculated to be 0.85% and 1.62%, respectively, for 4913 ACPS-IWS samples having different electrical parameters and physical dimensions, as compared with the results of quasi-static analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H. K. Chiou, C. Y. Chang, and H. H. Lin, Balun design for uniplanar broad band double balanced mixer. Electro. Lett. 31, 2113–2114 (1995).

    Article  Google Scholar 

  2. C. P. Wen, Coplanar waveguide: A surface transmission line suitable for nonreciprocal gyromagnetic device applications. IEEE Trans. Microwave Theor. Tech. MTT-17, 1087–1090 (1969).

    Article  Google Scholar 

  3. J. B. Knorr, and K. D. Kuchler, Analysis of coupled slots and coplanar strips on dielectric substrate. IEEE Trans. Microwave Theor. Tech. MTT-23, 541–548 (1975).

    Article  Google Scholar 

  4. G. Ghione, and C. Naldi, Analytical formulas for coplanar lines in hybrid and monolithic MICs. Electro. Lett. 20, 179–181 (1984).

    Article  Google Scholar 

  5. S. S. Bedair, Characteristics of some asymmetrical coupled transmission lines. IEEE Trans. Microwave Theor. Tech. MTT-32, 108–110 (1984).

    Article  Google Scholar 

  6. D. S. Phatak, and A. P. Defonzo, Dispersion characteristic of optically excited coplanar striplines. IEEE Trans. Microwave Theor. Tech. MTT-38, 654–661 (1990).

    Article  Google Scholar 

  7. D. S. Phatak, N. K. Das, and A. P. Defonzo, Dispersion characteristic of optically excited coplanar striplines: Comprehensive full-wave analysis. IEEE Trans. Microwave Theor. Tech. MTT-38, 1719–1730 (1990).

    Article  Google Scholar 

  8. G. Ghione, A CAD-oriented analytical model for the losses of general asymmetric coplanar lines in hybrid and monolithic MICs. IEEE Trans. Microwave Theor. Tech. MTT-41, 1499–1510 (1993).

    Article  Google Scholar 

  9. J. Svacina, Special Types of Coplanar Transmission Lines Suitable up to mm-wave Bands, IEEE 6th Topical Meeting on Electrical Performance of Electronic Packaging, 1997, pp. 99–102.

  10. R. N. Simons, Coplanar Waveguide Circuits, Components, and Systems. (Wiley, New York, 2001).

    Google Scholar 

  11. C. Yildiz, S. Sagiroglu, O. Saracoglu, and M. Turkmen, Neural models for an asymmetric coplanar stripline with an infinitely wide strip. Int. J. Electron. 90, 509–516 (2003).

    Article  Google Scholar 

  12. T. Q. Deng, M. S. Leong, P. S. Kooi, and T. S. Yeo, Synthesis formulas for coplanar lines in hybrid and monolithic MICs. Electro. Lett. 32, 2253–2254 (1996).

    Article  Google Scholar 

  13. C. Yildiz, New and very simple synthesis formulas for coplanar strip line. Microw. Opt. Technol. Lett. 44, 199–202 (2005).

    Article  Google Scholar 

  14. C. Yildiz, A. Akdagli, and M. Turkmen, Simple and accurate synthesis formulas obtained by using a differential evolution algorithm for coplanar strip lines. Microw. Opt. Technol. Lett. 48, 1133–1137 (2006).

    Article  Google Scholar 

  15. K. Guney, C. Yildiz, S. Kaya, and M. Turkmen, Synthesis formulas for micro-coplanar striplines. Microw. Opt. Technol. Lett. 50, 2884–2888 (2008).

    Article  Google Scholar 

  16. K. Price, Differential Evolution: A Fast and Simple Numerical Optimizer, IEEE North American Fuzzy Info Process Conf, Berkeley, CA, 1996, pp. 524–527.

  17. R. Storn, and K. Price, Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces. J. Global Optimizat. 11, 341–359 (1997).

    Article  MATH  Google Scholar 

  18. J. Kennedy and R. Eberhart, Particle Swarm Optimization, Int. Conf. Neural Networks, Perth, Australia, 1995, pp. 1942–1948.

  19. K. A. Michalski, Electromagnetic imaging of circular cylindrical conductors and tunnels using a differential evolution algorithm. Microw. Opt. Technol. Lett. 27, 330–334 (2000).

    Article  Google Scholar 

  20. A. Qing, Electromagnetic inverse scattering of multiple two-dimensional perfectly conducting objects by the differential evolution strategy. IEEE Trans. Antennas Propag. 51, 1251–1262 (2003).

    Article  Google Scholar 

  21. X. F. Luo, P. T. Teo, A. Qing, and C. K. Lee, Design of double-square-loop frequency-selective surfaces using differential evolution strategy coupled with equivalent-circuit model. Microw. Opt. Technol. Lett. 44, 159–162 (2005).

    Article  Google Scholar 

  22. X. F. Luo, A. Qing, and C. K. Lee, Application of the differential-evolution strategy to the design of frequency-selective surfaces. Int. J. RF Microwave Comput. Aided Eng. 15, 173–180 (2005).

    Article  Google Scholar 

  23. K. Guney, C. Yildiz, S. Kaya, and M. Turkmen, Synthesis formulas for multilayer homogeneous coupling structure with ground shielding. J. Electromagn. Waves Applicat. 21, 2073–2084 (2007).

    Article  Google Scholar 

  24. W. Wang, Y. Lu, J. S. Fu, and Y. Z. Xiong, Particle swarm optimization and finite-element based approach for microwave filter design. IEEE Trans. Magn. 41, 1800–1803 (2005).

    Article  Google Scholar 

  25. W. C. Liu, Design of a multiband CPW-fed monopole antenna using a particle swarm optimization approach. IEEE Trans. Antennas Propag. 53, 3273–3279 (2005).

    Article  Google Scholar 

  26. A. Akdagli, and K. Guney, New wide-aperture-dimension formula obtained by using a particle swarm optimization for optimum gain pyramidal horns. Microw. Opt. Technol. Lett. 48, 1201–1205 (2006).

    Article  Google Scholar 

  27. S. Xu, Y. R. Samii, and D. Gies, Shaped-reflector antenna designs using particle swarm optimization: An example of a direct-broadcast satellite antenna. Microw. Opt. Technol. Lett. 48, 1341–1347 (2006).

    Article  Google Scholar 

  28. N. Chauhan, A. Mittal, D. Wagner, M. V. Kartikeyan, and M. K. Thumm, Design and optimization of nonlinear tapers using particle swarm optimization. Int. J. Infrared Millim. Waves 29, 792–798 (2008).

    Article  Google Scholar 

Download references

Acknowledgment

The work described in this paper is supported by The Scientific and Technological Research Council of Turkey (TUBITAK), 2008, (Project No: 107E258).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Guney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guney, K., Yildiz, C., Kaya, S. et al. New and Accurate Synthesis Formulas for Asymmetric Coplanar Stripline with an Infinitely Wide Strip. J Infrared Milli Terahz Waves 30, 109–116 (2009). https://doi.org/10.1007/s10762-008-9443-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-008-9443-9

Keywords

Navigation