Skip to main content

Advertisement

Log in

The Anti-Inflammatory Effect of a Probiotic Cocktail in Human Feces Induced-Mouse Model

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract due to altered interaction between the immune system and the gut microbiota. The aim of this study was to investigate the role of a probiotic cocktail in modulating immune dysregulation induced in mice. Mice were divided into 5 groups (n = 5/group), and inflammation was induced in two separate groups by fecal microbiota transplantation (FMT) from the stool of human with IBD and dextran sulfate sodium (DSS). In the other two groups, the cocktail of Lactobacillus spp. and Bifidobacterium spp. (108CFU/kg/day) was administered daily for a total of 28days in addition to inducing inflammation. A group as a contcxsrol group received only water and food. The alteration of the selected genera of gut microbiota and the expression of some genes involved in the regulation of the inflammatory response were studied in the probiotic-treated and untreated groups by quantitative real-time PCR. The selected genera of gut microbiota of the FMT and DSS groups showed similar patterns on day 28 after each treatment. In the probiotic-treated groups, the population of the selected genera of gut microbiota normalized and the abundance of Firmicutes and Actinobacteria increased compared to the DSS and FMT groups. The expression of genes related to immune response and tight junctions was positively affected by the probiotic. Changes in the gut microbiota could influence the inflammatory status in the gut, and probiotics as a preventive or complementary treatment could improve the well-being of patients with inflammatory bowel disease symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data sets generated and/or analyzed during the current study are available upon request from the corresponding author.

References

  1. Negi, S., S. Saini, N. Tandel, K. Sahu, R.P. Mishra, and R.K. Tyagi. 2021. Translating Treg therapy for inflammatory bowel disease in humanized mice. Cells 10: 1847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baumgart, D.C., and S.R. Carding. 2007. Inflammatory bowel disease: Cause and immunobiology. The Lancet 369: 1627–1640.

    Article  CAS  Google Scholar 

  3. Sun, Y., L. Li, Y. Xia, W. Li, K. Wang, L. Wang, et al. 2019. The gut microbiota heterogeneity and assembly changes associated with the IBD. Scientific reports 9: 1–8.

    Google Scholar 

  4. Kaser, A., E. Martínez-Naves, and R.S. Blumberg. 2010. Endoplasmic reticulum stress: Implications for inflammatory bowel disease pathogenesis. Current opinion in gastroenterology 26: 318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eckmann, L. 2012. Ingrid Ordás, Lars Eckmann, Mark Talamini, Daniel C Baumgart. William J Sandborn. Lancet 380: 1606–1619.

    PubMed  Google Scholar 

  6. Bjerrum, J.T., Y. Wang, F. Hao, M. Coskun, C. Ludwig, U. Günther, et al. 2015. Metabonomics of human fecal extracts characterize ulcerative colitis. Crohn’s disease and healthy individuals. Metabolomics 11: 122–133.

    CAS  PubMed  Google Scholar 

  7. Ananthakrishnan, A.N. 2015. Epidemiology and risk factors for IBD. Nature reviews Gastroenterology & hepatology 12: 205–217.

    Article  Google Scholar 

  8. Shin, J.-H., Y.-K. Lee, W.-J. Shon, B. Kim, C.O. Jeon, J.-Y. Cho, et al. 2020. Gut microorganisms and their metabolites modulate the severity of acute colitis in a tryptophan metabolism-dependent manner. European Journal of Nutrition 59: 3591–3601.

    Article  CAS  PubMed  Google Scholar 

  9. Qin, J., R. Li, J. Raes, M. Arumugam, K.S. Burgdorf, C. Manichanh, et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wrzosek, L., D. Ciocan, P. Borentain, M. Spatz, V. Puchois, C. Hugot, et al. 2018. Transplantation of human microbiota into conventional mice durably reshapes the gut microbiota. Scientific reports 8: 1–9.

    Article  CAS  Google Scholar 

  11. Wang, W., L. Chen, R. Zhou, X. Wang, L. Song, S. Huang, et al. 2014. Increased proportions of Bifidobacterium and the Lactobacillus group and loss of butyrate-producing bacteria in inflammatory bowel disease. Journal of clinical microbiology 52: 398–406.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Machiels, K., M. Joossens, J. Sabino, V. De Preter, I. Arijs, V. Eeckhaut, et al. 2014. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63: 1275–1283.

    Article  CAS  PubMed  Google Scholar 

  13. Rehman, A., P. Rausch, J. Wang, J. Skieceviciene, G. Kiudelis, K. Bhagalia, et al. 2016. Geographical patterns of the standing and active human gut microbiome in health and IBD. Gut 65: 238–248.

    Article  PubMed  Google Scholar 

  14. Prosberg, M., F. Bendtsen, I. Vind, A.M. Petersen, and L.L. Gluud. 2016. The association between the gut microbiota and the inflammatory bowel disease activity: A systematic review and meta-analysis. Scandinavian journal of gastroenterology 51: 1407–1415.

    Article  CAS  PubMed  Google Scholar 

  15. Rosen, C.E., and N.W. Palm. 2018. Navigating the microbiota seas: Triangulation finds a way forward. Cell Host & Microbe 23: 1–3.

    Article  CAS  Google Scholar 

  16. Gkouskou, K.K., C. Deligianni, C. Tsatsanis, and A.G. Eliopoulos. 2014. The gut microbiota in mouse models of inflammatory bowel disease. Frontiers in cellular and infection microbiology 4: 28.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nanda, K., and A.C. Moss. 2012. Update on the management of ulcerative colitis: Treatment and maintenance approaches focused on MMX® mesalamine. Clinical pharmacology: Advances and applications 4: 41.

    CAS  PubMed  Google Scholar 

  18. Rhen, T., and J.A. Cidlowski. 2005. Antiinflammatory action of glucocorticoids—new mechanisms for old drugs. New England Journal of Medicine 353: 1711–1723.

    Article  CAS  PubMed  Google Scholar 

  19. Habens, F., N. Srinivasan, F. Oakley, D. Mann, A. Ganesan, and G. Packham. 2005. Novel sulfasalazine analogues with enhanced NF-kB inhibitory and apoptosis promoting activity. Apoptosis 10: 481–491.

    Article  CAS  PubMed  Google Scholar 

  20. Nugent, S., D. Kumar, D. Rampton, and D. Evans. 2001. Intestinal luminal pH in inflammatory bowel disease: Possible determinants and implications for therapy with aminosalicylates and other drugs. Gut 48: 571–577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Dieren, J.M., E.J. Kuipers, J.N. Samsom, E.E. Nieuwenhuis, and J.C. van der Woude. 2006. Revisiting the immunomodulators tacrolimus, methotrexate, and mycophenolate mofetil: Their mechanisms of action and role in the treatment of IBD. Inflammatory bowel diseases 12: 311–327.

    Article  PubMed  Google Scholar 

  22. Willot, S., A. Noble, and C. Deslandres. 2011. Methotrexate in the treatment of inflammatory bowel disease: An 8-year retrospective study in a Canadian pediatric IBD center. Inflammatory bowel diseases 17: 2521–2526.

    Article  PubMed  Google Scholar 

  23. Triantafillidis, J.K., E. Merikas, and F. Georgopoulos. 2011. Current and emerging drugs for the treatment of inflammatory bowel disease. Drug design, development and therapy 5: 185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Khan, I., N. Ullah, L. Zha, Y. Bai, A. Khan, T. Zhao, et al. 2019. Alteration of gut microbiota in inflammatory bowel disease (IBD): Cause or consequence? IBD treatment targeting the gut microbiome. Pathogens 8: 126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bengmark, S. 2001. Pre-, pro-and synbiotics. Current Opinion in Clinical Nutrition & Metabolic Care 4: 571–579.

    Article  CAS  Google Scholar 

  26. Rioux, K.P., and R.N. Fedorak. 2006. Probiotics in the treatment of inflammatory bowel disease. Journal of clinical gastroenterology 40: 260–263.

    Article  PubMed  Google Scholar 

  27. Madsen, K.L., J.S. Doyle, L.D. Jewell, M.M. Tavernini, and R.N. Fedorak. 1999. Lactobacillus species prevents colitis in interleukin 10 gene–deficient mice. Gastroenterology 116: 1107–1114.

    Article  CAS  PubMed  Google Scholar 

  28. Zhou, L., D. Liu, Y. Xie, X. Yao, and Y. Li. 2019. Bifidobacterium infantis induces protective colonic PD-L1 and Foxp3 regulatory T cells in an acute murine experimental model of inflammatory bowel disease. Gut and Liver 13: 430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Le, B., and S.H. Yang. 2018. Efficacy of Lactobacillus plantarum in prevention of inflammatory bowel disease. Toxicology reports 5: 314–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Salimi, A., A. Sepehr, H. Ajdarkosh, S. Aghamohamad, M. Talebi, and M.R. Pourshafie. 2022. Dynamic population of gut microbiota as an indicator of inflammatory bowel disease. Iranian biomedical journal 26: 350–356.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bartosch, S., A. Fite, G.T. Macfarlane, and M.E. McMurdo. 2004. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Applied and environmental microbiology 70: 3575–3581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. De Gregoris, T.B., N. Aldred, A.S. Clare, and J.G. Burgess. 2011. Improvement of phylum-and class-specific primers for real-time PCR quantification of bacterial taxa. Journal of microbiological methods 86: 351–356.

    Article  Google Scholar 

  33. Haarman, M., and J. Knol. 2006. Quantitative real-time PCR analysis of fecal Lactobacillus species in infants receiving a prebiotic infant formula. Applied and environmental microbiology 72: 2359–2365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Larsen, N., F.K. Vogensen, F.W. Van Den Berg, D.S. Nielsen, A.S. Andreasen, B.K. Pedersen, et al. 2010. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5: e9085.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jia, W., R.N. Whitehead, L. Griffiths, C. Dawson, R.H. Waring, D.B. Ramsden, et al. 2010. Is the abundance of Faecalibacterium prausnitzii relevant to Crohn’s disease? FEMS microbiology letters 310: 138–144.

    Article  CAS  PubMed  Google Scholar 

  36. Eshaghi, M., M.H. Bibalan, M. Rohani, M. Esghaei, M. Douraghi, M. Talebi, et al. 2017. Bifidobacterium obtained from mother’s milk and their infant stool; A comparative genotyping and antibacterial analysis. Microbial pathogenesis 111: 94–98.

    Article  CAS  PubMed  Google Scholar 

  37. Rohani, M., N. Noohi, M. Talebi, M. Katouli, and M.R. Pourshafie. 2015. Highly heterogeneous probiotic Lactobacillus species in healthy Iranians with low functional activities. PLoS ONE 10: e0144467.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Aghamohammad, S., A. Sepehr, S.T. Miri, S. Najafi, M.R. Pourshafie, and M. Rohani. 2022. The role of combining probiotics in preventing and controlling inflammation: a focus on the anti-inflammatory and immunomodulatory effects of probiotics in an in vitro model of IBD. Canadian Journal of Gastroenterology and Hepatology 2022.

  39. Miri, S.T., F. Sotoodehnejadnematalahi, M.M. Amiri, M.R. Pourshafie, and M. Rohani. 2022. The impact of Lactobacillus and Bifidobacterium probiotic cocktail on modulation of gene expression of gap junctions dysregulated by intestinal pathogens. Archives of Microbiology 204: 417.

    Article  CAS  PubMed  Google Scholar 

  40. Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  41. Wei, Y.-L., Y.-Q. Chen, H. Gong, N. Li, K.-Q. Wu, W. Hu, et al. 2018. Fecal microbiota transplantation ameliorates experimentally induced colitis in mice by upregulating AhR. Frontiers in microbiology 9: 1921.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Arrieta, M.-C., J. Walter, and B.B. Finlay. 2016. Human microbiota-associated mice: A model with challenges. Cell host & microbe 19: 575–578.

    Article  CAS  Google Scholar 

  43. Tomas, J., L. Wrzosek, N. Bouznad, S. Bouet, C. Mayeur, M.L. Noordine, et al. 2013. Primocolonization is associated with colonic epithelial maturation during conventionalization. The FASEB Journal 27: 645–655.

    Article  CAS  PubMed  Google Scholar 

  44. Chung, H., S.J. Pamp, J.A. Hill, N.K. Surana, S.M. Edelman, E.B. Troy, et al. 2012. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149: 1578–1593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gaboriau-Routhiau, V., S. Rakotobe, E. Lécuyer, I. Mulder, A. Lan, C. Bridonneau, et al. 2009. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31: 677–689.

    Article  CAS  PubMed  Google Scholar 

  46. Vich Vila, A., F. Imhann, V. Collij, S.A. Jankipersadsing, T. Gurry, Z. Mujagic, et al. 2018. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Science Translational Medicine 10: eaap8914.

    Article  PubMed  Google Scholar 

  47. Chou, Y.-C., P.-Y. Ho, W.-J. Chen, S.-H. Wu, and M.-H. Pan. 2020. Lactobacillus fermentum V3 ameliorates colitis-associated tumorigenesis by modulating the gut microbiome. American journal of cancer research 10: 1170.

    PubMed  PubMed Central  Google Scholar 

  48. Wei, J., and J. Feng. 2010. Signaling pathways associated with inflammatory bowel disease. Recent patents on inflammation & allergy drug discovery 4: 105–117.

    Article  CAS  Google Scholar 

  49. Didierlaurent, A., J.C. Sirard, J.P. Kraehenbuhl, and M.R. Neutra. 2002. How the gut senses its content. Cellular microbiology 4: 61–72.

    Article  CAS  PubMed  Google Scholar 

  50. Sansonetti, P.J. 2004. War and peace at mucosal surfaces. Nature Reviews Immunology 4: 953–964.

    Article  CAS  PubMed  Google Scholar 

  51. Burgueño, J.F., and M.T. Abreu. 2020. Epithelial Toll-like receptors and their role in gut homeostasis and disease. Nature Reviews Gastroenterology & Hepatology 17: 263–278.

    Article  Google Scholar 

  52. Takeda, K., and S. Akira. 2004. TLR signaling pathways. In Seminars in immunology, vol. 16. Elsevier.

    Google Scholar 

  53. Maldonado Galdeano M.C., J.M. Lemme Dumit, N. Thieblemont, E. Carmuega, R. Weill, G.dV. Perdigon. 2015. Stimulation of innate immune cells induced by probiotics: participation of toll-like receptors.

  54. Lee, S.I., H.S. Kim, J.M. Koo, and I.H. Kim. 2016. Lactobacillus acidophilus modulates inflammatory activity by regulating the TLR4 and NF-κB expression in porcine peripheral blood mononuclear cells after lipopolysaccharide challenge. British Journal of Nutrition 115: 567–575.

    Article  CAS  PubMed  Google Scholar 

  55. von Schillde, M.-A., G. Hörmannsperger, M. Weiher, C.-A. Alpert, H. Hahne, C. Bäuerl, et al. 2012. Lactocepin secreted by Lactobacillus exerts anti-inflammatory effects by selectively degrading proinflammatory chemokines. Cell host & microbe 11: 387–396.

    Article  Google Scholar 

  56. Yao, P., F. Tan, H. Gao, L. Wang, T. Yang, and Y. Cheng. 2017. Effects of probiotics on Toll-like receptor expression in ulcerative colitis rats induced by 2, 4, 6-trinitro-benzene sulfonic acid. Molecular Medicine Reports 15: 1973–1980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Petit, C.S., F. Barreau, L. Besnier, P. Gandille, B. Riveau, D. Chateau, et al. 2012. Requirement of cellular prion protein for intestinal barrier function and mislocalization in patients with inflammatory bowel disease. Gastroenterology 143 (122–132): e15.

    Google Scholar 

  58. Xu, C.-M., X.-M. Li, B.-Z. Qin, and B. Liu. 2016. Effect of tight junction protein of intestinal epithelium and permeability of colonic mucosa in pathogenesis of injured colonic barrier during chronic recovery stage of rats with inflammatory bowel disease. Asian Pacific Journal of Tropical Medicine 9: 148–152.

    Article  CAS  PubMed  Google Scholar 

  59. Zeissig, S., N. Bürgel, D. Günzel, J. Richter, J. Mankertz, U. Wahnschaffe, et al. 2007. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut 56: 61–72.

    Article  CAS  PubMed  Google Scholar 

  60. Anderson, R.C., A.L. Cookson, W.C. McNabb, Z. Park, M.J. McCann, W.J. Kelly, et al. 2010. Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC microbiology 10: 1–11.

    Article  Google Scholar 

  61. Zhang, Y., X. Zhao, Y. Zhu, J. Ma, H. Ma, and H. Zhang. 2018. Probiotic mixture protects dextran sulfate sodium-induced colitis by altering tight junction protein expressions and increasing Tregs. Mediators of Inflammation 2018.

Download references

Acknowledgements

We appreciate the co-operation of all bacteriology laboratory personnel in the Pasteur Institute of Iran.

Funding

This work was supported by the Pasteur Institute of Iran (grant numbers BP-9532).

Author information

Authors and Affiliations

Authors

Contributions

Afsaneh, S. designed the research, carried out sampling, lab works, statistical analysis, data collection, and wrote the final manuscript; M.R.P., M.R., and M.T. developed the original idea, provided materials, and supervised the work; Amin, S. and N.H. contributed to lab works and data analysis.

Corresponding authors

Correspondence to Mahdi Rohani or Mohammad Reza Pourshafie.

Ethics declarations

Human and Animal Rights and Informed Content

The experimental protocols were established following the Declaration of Helsinki and approved by the Ethics Committee of Pasteur Institute of Iran (IR.PII.REC.1398.060). Signed informed consent was obtained from all participants. All methods were performed in accordance with the relevant guidelines and regulations. Experimental protocols were approved by the Pasteur Institute of Iran.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salimi, A., Sepehr, A., Hejazifar, N. et al. The Anti-Inflammatory Effect of a Probiotic Cocktail in Human Feces Induced-Mouse Model. Inflammation 46, 2178–2192 (2023). https://doi.org/10.1007/s10753-023-01870-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01870-x

KEY WORDS

Navigation