Skip to main content
Log in

Lymphocyte-Specific Protein Tyrosine Kinase Contributes to Spontaneous Regression of Liver Fibrosis may by Interacting with Suppressor of Cytokine Signaling 1

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Quiescent hepatic stellate cells (qHSCs), converted to myofibroblasts, produce fibrous scars, which is an essential event during liver fibrogenesis. Clinical and experimental fibrosis undergo remarkable regression when the underlying etiological agent is removed. Some myofibroblasts revert to an inactive phenotype (iHSCs) during the regression of fibrosis. However, the mechanisms underlying HSC activation and reversal remain unclear. The present study demonstrated that the expression of lymphocyte-specific protein tyrosine kinase (LCK) was increased in fibrotic livers but decreased after spontaneous recovery in vivo and in vitro, which was correlated with the expression of α-smooth muscle actin (α-SMA) and type I collagen (COL-1). Further investigation indicated that specific knockdown of LCK by a recombination adeno-associated virus 9 (rAAV9) in C57BL/6 mice ameliorated liver fibrosis. Co-incubation of TGF-β1-induced HSC-T6 cells with LCK-siRNA inhibited cell proliferation and activation. Overexpression of LCK inhibited activated HSCs going to inactivated phenotype. Interestingly, we found that LCK may interact with suppressor of cytokine signaling 1 (SOCS1) and may influence the expression of p-JAK1 and p-STAT1/3. These data suggest that LCK may play a regulatory role in liver fibrosis by inhibiting SOCS1, indicating that LCK is a potential therapeutic target for liver fibrosis treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

rAAV9:

Recombination adeno-associated viruses

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

α-SMA:

α-Smooth muscle actin

CCl4 :

Carbon tetrachloride

COl1α1:

Type I collagen

ECM:

Extracellular matrix

HA:

Hyaluronic acid

HSC:

Hepatic stellate cell

JAK1:

Janus kinase-1

LCK:

Lymphocyte-specific protein tyrosine kinase

LN:

Laminin

PCIII:

Type 3 procollagen

siRNA:

Small interfering RNA

SOCS1:

Suppressor of cytokine signaling 1

STAT1:

Signal transducer and activator of transcription 1

STAT3:

Signal transducer and activator of transcription 3.

References

  1. Ginès, P., A. Krag, J.G. Abraldes, E. Solà, N. Fabrellas, and P.S. Kamath. 2021. Liver cirrhosis. The Lancet 398: 1359–1376.

    Article  Google Scholar 

  2. Berumen, J., J. Baglieri, T. Kisseleva, and K. Mekeel. 2021. Liver fibrosis: Pathophysiology and clinical implications. WIREs Mech Dis 13: e1499.

    Article  CAS  PubMed  Google Scholar 

  3. Tsuchida, T., and S.L. Friedman. 2017. Mechanisms of hepatic stellate cell activation. Nature Reviews. Gastroenterology & Hepatology 14: 397–411.

    Article  CAS  Google Scholar 

  4. Bu, F.T., Y. Zhu, X. Chen, A. Wang, Y.F. Zhang, H.M. You, Y. Yang, Y.R. Yang, C. Huang, and J. Li. 2021. Circular RNA circPSD3 alleviates hepatic fibrogenesis by regulating the miR-92b-3p/Smad7 axis. Molecular Therapy Nucleic Acids 23: 847–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Higashi, T., S.L. Friedman, and Y. Hoshida. 2017. Hepatic stellate cells as key target in liver fibrosis. Advanced Drug Delivery Reviews 121: 27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Calvente, C.J., M. Tameda, C.D. Johnson, H. Del Pilar, Y.C. Lin, N. Adronikou, X. De Mollerat Du, C. Jeu, J. Llorente, and A.E. Feldstein. Boyer. 2019. Neutrophils contribute to spontaneous resolution of liver inflammation and fibrosis via microRNA-223. The Journal of Clinical Investigation 129: 4091–4109.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kisseleva, T., M. Cong, Y. Paik, D. Scholten, C. Jiang, C. Benner, K. Iwaisako, T. Moore-Morris, B. Scott, H. Tsukamoto, S.M. Evans, W. Dillmann, C.K. Glass, and D.A. Brenner. 2012. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proceedings of the National Academy of Sciences of the United States of America 109: 9448–9453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Krizhanovsky, V., M. Yon, R.A. Dickins, S. Hearn, J. Simon, C. Miething, H. Yee, L. Zender, and S.W. Lowe. 2008. Senescence of activated stellate cells limits liver fibrosis. Cell 134: 657–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kisseleva, T., and D. Brenner. 2021. Molecular and cellular mechanisms of liver fibrosis and its regression. Nature Reviews. Gastroenterology & Hepatology 18: 151–166.

    Article  Google Scholar 

  10. Liu, X., Y. Wu, Y. Yang, W. Li, C. Huang, X. Meng, and J. Li. 2016. Role of NLRC5 in progression and reversal of hepatic fibrosis. Toxicology and Applied Pharmacology 294: 43–53.

    Article  CAS  PubMed  Google Scholar 

  11. Li, X., X.Q. Wu, T. Xu, X.F. Li, Y. Yang, W.X. Li, C. Huang, X.M. Meng, and J. Li. 2016. Role of histone deacetylases(HDACs) in progression and reversal of liver fibrosis. Toxicology and Applied Pharmacology 306: 58–68.

    Article  CAS  PubMed  Google Scholar 

  12. Wang, S., and S.L. Friedman. 2020. Hepatic fibrosis: A convergent response to liver injury that is reversible. Journal of Hepatology 73: 210–211.

    Article  CAS  PubMed  Google Scholar 

  13. Yu, H.X., Y. Yao, F.T. Bu, Y. Chen, Y.T. Wu, Y. Yang, X. Chen, Y. Zhu, Q. Wang, X.Y. Pan, X.M. Meng, C. Huang, and J. Li. 2019. Blockade of YAP alleviates hepatic fibrosis through accelerating apoptosis and reversion of activated hepatic stellate cells. Molecular Immunology 107: 29–40.

    Article  CAS  PubMed  Google Scholar 

  14. Bu, F.T., Y. Chen, H.X. Yu, X. Chen, Y. Yang, X.Y. Pan, Q. Wang, Y.T. Wu, C. Huang, X.M. Meng, and J. Li. 2018. SENP2 alleviates CCl4-induced liver fibrosis by promoting activated hepatic stellate cell apoptosis and reversion. Toxicology Letters 289: 86–98.

    Article  CAS  PubMed  Google Scholar 

  15. You, H., L. Wang, F. Bu, H. Meng, X. Pan, J. Li, Y. Zhang, A. Wang, N. Yin, C. Huang, and J. Li. 2021. The miR-455-3p/HDAC2 axis plays a pivotal role in the progression and reversal of liver fibrosis and is regulated by epigenetics. The FASEB Journal 35: e21700.

    Article  CAS  PubMed  Google Scholar 

  16. Kisseleva, T., and D.A. Brenner. 2011. Anti-fibrogenic strategies and the regression of fibrosis. Best Practice & Research Clinical Gastroenterology 25: 305–317.

    Article  CAS  Google Scholar 

  17. Li, L., Y. Cui, J. Shen, H. Dobson, and G. Sun. 2019. Evidence for activated Lck protein tyrosine kinase as the driver of proliferation in acute myeloid leukemia cell, CTV-1. Leukemia Research 78: 12–20.

    Article  CAS  PubMed  Google Scholar 

  18. Zepecki, J.P., K.M. Snyder, M.M. Moreno, E. Fajardo, A. Fiser, J. Ness, A. Sarkar, S.A. Toms, and N. Tapinos. 2019. Regulation of human glioma cell migration, tumor growth, and stemness gene expression using a Lck targeted inhibitor. Oncogene 38: 1734–1750.

    Article  CAS  PubMed  Google Scholar 

  19. Shi, M., J.C. Cooper, and C.L. Yu. 2006. A constitutively active Lck kinase promotes cell proliferation and resistance to apoptosis through signal transducer and activator of transcription 5b activation. Molecular Cancer Research 4: 39–45.

    Article  CAS  PubMed  Google Scholar 

  20. Abraham, N., M. Carrie Miceli, J.R. Parnes, and A. Veillete. 1991. Enhancement of T-cell responsiveness by the lymphocyte-specific tyrosine protein kinase p56lck. Nature 350.

  21. Wei, Q., J. Brzostek, S. Sankaran, J. Casas, L.S. Hew, J. Yap, X. Zhao, L. Wojciech, and N.R.J. Gascoigne. 2020. Lck bound to coreceptor is less active than free Lck. Proceedings of the National Academy of Sciences of the United States of America 117: 15809–15817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bommhardt, U., B. Schraven, and L. Simeoni. 2019. Beyond TCR signaling: emerging functions of lck in cancer and immunotherapy. International Journal of Molecular Sciences 20.

  23. Talab, F., J.C. Allen, V. Thompson, K. Lin, and J.R. Slupsky. 2013. LCK is an important mediator of B-cell receptor signaling in chronic lymphocytic leukemia cells. Molecular Cancer Research 11: 541–554.

    Article  CAS  PubMed  Google Scholar 

  24. Betapudi, V., M. Shukla, R. Alluri, S. Merkulov, and K.R. McCrae. 2016. Novel role for p56/Lck in regulation of endothelial cell survival and angiogenesis. The FASEB Journal 30: 3515–3526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mas, V.R., D.G. Maluf, K.J. Archer, K. Yanek, X. Kong, L. Kulik, C.E. Freise, K.M. Olthoff, R.M. Ghobrial, P. McIver, and R. Fisher. 2009. Genes involved in viral carcinogenesis and tumor initiation in hepatitis C virus-induced hepatocellular carcinoma. Molecular Medicine 15: 85–94.

    Article  CAS  PubMed  Google Scholar 

  26. Wurmbach, E., Y.B. Chen, G. Khitrov, W. Zhang, S. Roayaie, M. Schwartz, I. Fiel, S. Thung, V. Mazzaferro, J. Bruix, E. Bottinger, S. Friedman, S. Waxman, and J.M. Llovet. 2007. Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatology 45: 938–947.

    Article  CAS  PubMed  Google Scholar 

  27. Mejias, M., J. Gallego, S. Naranjo-Suarez, M. Ramirez, N. Pell, A. Manzano, C. Suner, R. Bartrons, R. Mendez, and M. Fernandez. 2020. CPEB4 increases expression of PFKFB3 to induce glycolysis and activate mouse and human hepatic stellate cells, promoting liver fibrosis. Gastroenterology 159: 273–288.

    Article  CAS  PubMed  Google Scholar 

  28. Conboy, C.B., J.A. Yonkus, E.H. Buckarma, D.G. Mun, N.W. Werneburg, R.D. Watkins, R. Alva-Ruiz, J.L. Tomlinson, Y. Guo, J. Wang, D. O’Brien, C.E. McCabe, E. Jessen, R.P. Graham, R.C. Buijsman, D. Vu, J. de Man, S.I. Ilyas, M.J. Truty, M. Borad, A. Pandey, G.J. Gores, and R.L. Smoot. 2023. LCK inhibition downregulates YAP activity and is therapeutic in patient-derived models of cholangiocarcinoma. Journal of Hepatology 78: 142–152.

    Article  CAS  PubMed  Google Scholar 

  29. Kumar Singh, P., A. Kashyap, and O. Silakari. 2018. Exploration of the therapeutic aspects of Lck: A kinase target in inflammatory mediated pathological conditions. Biomedicine & Pharmacotherapy 108: 1565–1571.

    Article  CAS  Google Scholar 

  30. Liu, J., Z. Guo, Y. Zhang, T. Wu, Y. Ma, W. Lai, and Z. Guo. 2020. LCK inhibitor attenuates atherosclerosis in ApoE(-/-) mice via regulating T cell differentiation and reverse cholesterol transport. Journal of Molecular and Cellular Cardiology 139: 87–97.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao, H., L. Wu, Y. Zhang, S. Feng, Y. Ding, X. Deng, R. Feng, J. Li, T. Ma, and C. Huang. 2022. Betulinic acid prevents liver fibrosis by binding Lck and suppressing Lck in HSC activation and proliferation. Journal of Ethnopharmacology 296: 115459.

    Article  CAS  PubMed  Google Scholar 

  32. Venkitachalam, S., F. Y. Chueh, K. F. Leong, P. S., C. L. Yu. 2011. Suppressor of cytokine signaling 1 interacts with oncogenic lymphocyte-specific protein tyrosine kinase. Oncology Reports 25.

  33. Cooper, J.C., M. Shi, F.Y. Chueh, S. Venkitachalam, and C.L. Yu. 2010. Enforced SOCS1 and SOCS3 expression attenuates Lck-mediated cellular transformation. International Journal of Oncology 36: 1201–1208.

    CAS  PubMed  Google Scholar 

  34. Cheng, C., C. Huang, T.T. Ma, E.B. Bian, Y. He, L. Zhang, and J. Li. 2014. SOCS1 hypermethylation mediated by DNMT1 is associated with lipopolysaccharide-induced inflammatory cytokines in macrophages. Toxicology Letters 225: 488–497.

    Article  CAS  PubMed  Google Scholar 

  35. Zhu, H., H. Zhao, S. Xu, Y. Zhang, Y. Ding, J. Li, C. Huang, and T. Ma. 2021. Sennoside A alleviates inflammatory responses by inhibiting the hypermethylation of SOCS1 in CCl4-induced liver fibrosis. Pharmacological Research 174: 105926.

    Article  CAS  PubMed  Google Scholar 

  36. Mafanda, E.K., R. Kandhi, D. Bobbala, M.G.M. Khan, M. Nandi, A. Menendez, S. Ramanathan, and S. Ilangumaran. 2019. Essential role of suppressor of cytokine signaling 1 (SOCS1) in hepatocytes and macrophages in the regulation of liver fibrosis. Cytokine 124: 154501.

    Article  CAS  PubMed  Google Scholar 

  37. Kandhi, R., D. Bobbala, M. Yeganeh, M. Mayhue, A. Menendez, and S. Ilangumaran. 2016. Negative regulation of the hepatic fibrogenic response by suppressor of cytokine signaling 1. Cytokine 82: 58–69.

    Article  CAS  PubMed  Google Scholar 

  38. Chim, C.S., T.K. Fung, W.C. Cheung, R. Liang, and Y.L. Kwong. 2004. SOCS1 and SHP1 hypermethylation in multiple myeloma: Implications for epigenetic activation of the Jak/STAT pathway. Blood 103: 4630–4635.

    Article  CAS  PubMed  Google Scholar 

  39. Marti-Rodrigo, A., F. Alegre, A.B. Moragrega, F. Garcia-Garcia, P. Marti-Rodrigo, A. Fernandez-Iglesias, J. Gracia-Sancho, N. Apostolova, J.V. Esplugues, and A. Blas-Garcia. 2020. Rilpivirine attenuates liver fibrosis through selective STAT1-mediated apoptosis in hepatic stellate cells. Gut 69: 920–932.

    Article  CAS  PubMed  Google Scholar 

  40. Luan, J., J. Fu, D. Wang, C. Jiao, X. Cui, C. Chen, D. Liu, Y. Zhang, Y. Wang, P.S.T. Yuen, J.B. Kopp, J. Pi, and H. Zhou. 2020. miR-150-based RNA interference attenuates tubulointerstitial fibrosis through the SOCS1/JAK/STAT pathway in vivo and in vitro. Molecular Therapy Nucleic Acids 22: 871–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Feng, Y., J. Ren, Y. Gui, W. Wei, B. Shu, Q. Lu, X. Xue, X. Sun, W. He, J. Yang, and C. Dai. 2018. Wnt/beta-catenin-promoted macrophage alternative activation contributes to kidney fibrosis. Journal of the American Society of Nephrology 29: 182–193.

    Article  CAS  PubMed  Google Scholar 

  42. Liang, Y.B., H. Tang, Z.B. Chen, L.J. Zeng, J.G. Wu, W. Yang, Z.Y. Li, and Z.F. Ma. 2017. Downregulated SOCS1 expression activates the JAK1/STAT1 pathway and promotes polarization of macrophages into M1 type. Molecular Medicine Reports 16: 6405–6411.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Center for Scientific Research of Anhui Medical University for valuable help in our experiment. This work was supported by funding from the National Science Foundation of China (82070628) and the University Synergy Innovation Program of Anhui Province (GXXT-2019-045, GXXT-2020-063, GXXT-2020-025). The authors thank the Center for Scientific Research of Anhui Medical University for valuable help in our experiment.

Author information

Authors and Affiliations

Authors

Contributions

Huizi Zhao and Hong Zhu wrote the manuscript text. Yuan Zhang and Yuhao Ding prepared figures and collected samples. Rui Feng, Jun Li, Taotao Ma, and Cheng Huang designed the experiment.

Corresponding authors

Correspondence to Taotao Ma or Cheng Huang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 19280 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Zhu, H., Zhang, Y. et al. Lymphocyte-Specific Protein Tyrosine Kinase Contributes to Spontaneous Regression of Liver Fibrosis may by Interacting with Suppressor of Cytokine Signaling 1. Inflammation 46, 1653–1669 (2023). https://doi.org/10.1007/s10753-023-01831-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01831-4

KEY WORDS

Navigation