Skip to main content

Advertisement

Log in

Quantile-Dependent Expressivity of Serum Interleukin-6 Concentrations as a Possible Explanation of Gene-Disease Interactions, Gene-Environment Interactions, and Pharmacogenetic Effects

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Interleukin 6 (IL-6) is a moderately heritable pleiotropic cytokine whose elevated concentrations in coronary artery disease, peripheral arterial disease, pulmonary arterial hypertension, Eales’ disease, Sjògren’s syndrome, osteoarthritis, adenocarcinoma, neuroblastoma, polymyalgia rheumatica, pulmonary tuberculosis, and enterovirus 71 infection, and following coronary artery bypass graft show larger genetic effects than in unaffected low IL-6 controls. We hypothesize that genetic effects may depend upon whether average IL-6 concentrations are high or low, i.e., quantile-dependent expressivity. Quantile-specific offspring-parent (βOP) and full-sib regression slopes (βFS) were estimated by applying quantile regression to the age- and sex-adjusted serum IL-6 concentrations in families surveyed in the Framingham Heart Study. Quantile-specific heritabilities were calculated as h2 = 2βOP / (1 + rspouse) and h2 = {(1 + 8rspouseβFS)0.5 −1} / (2rspouse)). Heritability (h2 ± SE) of IL-6 concentrations increased from 0.01 ± 0.01 at the 10th percentile (NS), 0.02 ± 0.01 at the 25th (P = 0.009), 0.03 ± 0.01 at the 50th (P = 0.007), 0.04 ± 0.02 at the 75th (P = 0.004), and 0.13 ± 0.05 at the 90th percentile (P = 0.03), or 0.0005 ± 0.0002 for each 1% increase in the offspring’s phenotype distribution (Plinear trend = 0.02) when estimated from βOP and from 0.02 ± 0.02 at the 10th (NS), 0.02 ± 0.02 at the 25th (NS), 0.06 ± 0.02 at the 50th (P = 0.01), 0.12 ± 0.04 at the 75th (P = 0.001), and 0.30 ± 0.03 at the 90th percentile (P < 10−16), or 0.0015 ± 0.0007 for each 1% increase in the sibling phenotype distribution (Plinear trend = 0.02) when estimated from βFS. Thus the heritability of serum IL-6 concentrations is quantile dependent, which may contribute in part to the larger genetic effect size reported for diseases and environmental conditions that elevate IL-6 concentrations vis-à-vis unaffected controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

AVAILABILITY OF DATA AND MATERIALS

The data used in these analyses are available from NIH National Heart Lung, and Blood Institute Biologic Specimen and Data Repository Information Coordinating Center directly through the website https://biolincc.nhlbi.nih.gov/my/submitted/request/. Simultaneous quantile regression was performed using the sqreg command of Stata (version. 11, StataCorp, College Station, TX).

Abbreviations

β FS :

Full-sib regression slope

β OP :

Offspring-parent regression slope

BMI:

Body mass index

CABG:

Coronary artery bypass graft

CAD:

Coronary artery disease

COPD :

Chronic obstructive pulmonary disease

EV71:

Enterovirus 71

GWAS:

Genomewide association study

h 2 :

Heritability in the narrow sense

IL-6:

Interleukin-6

LPS:

Lipopolysaccharide

MODS :

Multiple organ dysfunction syndrome

PAD :

Peripheral arterial disease

PAH:

Pulmonary arterial hypertension

PMR:

Polymyalgia rheumatica

T2DM:

Type 2 diabetes mellitus

VEGF :

Vascular endothelial growth factor

References

  1. Hirano, T. 2021. IL-6 in inflammation, autoimmunity and cancer. International Immunology 33: 127–148. https://doi.org/10.1093/intimm/dxaa078.

    Article  CAS  PubMed  Google Scholar 

  2. Terry, C.F., V. Loukaci, and F.R. Green. 2000. Cooperative influence of genetic polymorphisms on interleukin 6 transcriptional regulation. Journal of Biological Chemistry 275: 18138–18144. https://doi.org/10.1074/jbc.M000379200.

    Article  CAS  Google Scholar 

  3. Ahluwalia, T.S., B.P. Prins, M. Abdollahi, N.J. Armstrong, S. Aslibekyan, L. Bain, B. Jefferis, J. Baumert, M. Beekman, Y. Ben-Shlomo, J.C. Bis, B.D. Mitchell, E. de Geus, G.E. Delgado, D. Marek, J. Eriksson, E. Kajantie, S. Kanoni, J.P. Kemp, C. Lu, R.E. Marioni, S. McLachlan, Y. Milaneschi, I.M. Nolte, A.M. Petrelis, E. Porcu, M. Sabater-Lleal, E. Naderi, I. Seppälä, T. Shah, G. Singhal, M. Standl, A. Teumer, A. Thalamuthu, E. Thiering, S. Trompet, C.M. Ballantyne, E.J. Benjamin, J.P. Casas, C. Toben, G. Dedoussis, J. Deelen, P. Durda, J. Engmann, M.F. Feitosa, H. Grallert, A. Hammarstedt, S.E. Harris, G. Homuth, J.J. Hottenga, S. Jalkanen, Y. Jamshidi, M.C. Jawahar, T. Jess, M. Kivimaki, M.E. Kleber, J. Lahti, Y. Liu, P. Marques-Vidal, D. Mellström, S.P. Mooijaart, M. Müller-Nurasyid, B. Penninx, J.A. Revez, P. Rossing, K. Räikkönen, N. Sattar, H. Scharnagl, B. Sennblad, A. Silveira, B.S. Pourcain, N.J. Timpson, J. Trollor, CHARGE Inflammation Working Group, J. van Dongen, D. Van Heemst, S. Visvikis-Siest, P. Vollenweider, U. Völker, M. Waldenberger, G. Willemsen, D. Zabaneh, R.W. Morris, D.K. Arnett, B.T. Baune, D.I. Boomsma, Y.C. Chang, I.J. Deary, P. Deloukas, J.G. Eriksson, D.M. Evans, M.A. Ferreira, T. Gaunt, V. Gudnason, A. Hamsten, J. Heinrich, A. Hingorani, S.E. Humphries, J.W. Jukema, W. Koenig, M. Kumari, Z. Kutalik, D.A. Lawlor, T. Lehtimäki, W. März, K.A. Mather, S. Naitza, M. Nauck, C. Ohlsson, J.F. Price, O. Raitakari, K. Rice, P.S. Sachdev, E. Slagboom, T.I.A. Sørensen, T. Spector, D. Stacey, M.G. Stathopoulou, T. Tanaka, S.G. Wannamethee, P. Whincup, J.I. Rotter, A. Dehghan, E. Boerwinkle, B.M. Psaty, H. Snieder, B.Z. Alizadeh. 2021. Genome-wide association study of circulating interleukin 6 levels identifies novel loci. Human Molecular Genetics 30:393–409. https://doi.org/10.1093/hmg/ddab023.

  4. Grunnet, L., P. Poulsen, B. Klarlund Pedersen, T. Mandrup-Poulsen, and A. Vaag. 2006. Plasma cytokine levels in young and elderly twins: Genes versus environment and relation to in vivo insulin action. Diabetologia 49: 343–350. https://doi.org/10.1007/s00125-005-0080-8.

    Article  CAS  PubMed  Google Scholar 

  5. Haddy, N., C. Sass, S. Maumus, B. Marie, S. Droesch, G. Siest, D. Lambert, and S. Visvikis. 2005. Biological variations, genetic polymorphisms and familial resemblance of TNF-alpha and IL-6 concentrations: STANISLAS cohort. European Journal of Human Genetics 13: 109–117. https://doi.org/10.1038/sj.ejhg.5201294.

    Article  CAS  PubMed  Google Scholar 

  6. Sas, A.A., Y. Jamshidi, D. Zheng, T. Wu, J. Korf, B.Z. Alizadeh, T.D. Spector, and H. Snieder. 2012. The age-dependency of genetic and environmental influences on serum cytokine levels: A twin study. Cytokine 60: 108–113. https://doi.org/10.1016/j.cyto.2012.04.047.

    Article  CAS  PubMed  Google Scholar 

  7. de Maat, M.P., E.M. Bladbjerg, J.V. Hjelmborg, L. Bathum, J. Jespersen, and K. Christensen. Genetic influence on inflammation variables in the elderly. Arteriosclerosis, Thrombosis, and Vascular Biology. 2004;24:2168–73. https://doi.org/10.1161/01.ATV.0000143856.01669.e7.

  8. Neijts, M., J. van Dongen, C. Kluft, D.I. Boomsma, G. Willemsen, and E.J. de Geus. 2013. Genetic architecture of the pro-inflammatory state in an extended twin-family design. Twin Research and Human Genetics 16: 931–940. https://doi.org/10.1017/thg.2013.58.

    Article  PubMed  Google Scholar 

  9. Pantsulaia, I., S. Trofimov, E. Kobyliansky, and G. Livshits. 2002. Genetic and environmental influences on IL-6 and TNF-alpha plasma levels in apparently healthy general population. Cytokine 19: 138–146. https://doi.org/10.1006/cyto.2002.1959.

    Article  CAS  PubMed  Google Scholar 

  10. Su, S., H. Snieder, A.H. Miller, J. Ritchie, J.D. Bremner, J. Goldberg, J. Dai, L. Jones, N.V. Murrah, J. Zhao, and V. Vaccarino. 2008. Genetic and environmental influences on systemic markers of inflammation in middle-aged male twins. Atherosclerosis 200: 213–220. https://doi.org/10.1016/j.atherosclerosis.2007.12.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Prakash, J., F.M. Williams, S. Trofimov, G. Surdulescu, T. Spector, and G. Livshits. 2016. Quantitative genetics of circulating Dickkopf-related protein 1 (DKK1) in community-based sample of UK twins. Osteoporosis International 27: 2065–2075. https://doi.org/10.1007/s00198-016-3486-x.

    Article  CAS  PubMed  Google Scholar 

  12. Su, S., A.H. Miller, H. Snieder, J.D. Bremner, J. Ritchie, C. Maisano, L. Jones, N.V. Murrah, J. Goldberg, and V. Vaccarino. 2009. Common genetic contributions to depressive symptoms and inflammatory markers in middle-aged men: The Twins Heart Study. Psychosomatic Medicine 71: 152–158. https://doi.org/10.1097/PSY.0b013e31819082ef.

    Article  CAS  PubMed  Google Scholar 

  13. Wörns, M.A., A. Victor, P.R. Galle, and T. Höhler. 2006. Genetic and environmental contributions to plasma C-reactive protein and interleukin-6 levels—a study in twins. Genes and Immunity 7: 600–605. https://doi.org/10.1038/sj.gene.6364330.

    Article  CAS  PubMed  Google Scholar 

  14. de Craen, A.J., D. Posthuma, E.J. Remarque, A.H. van den Biggelaar, R.G. Westendorp, and D.I. Boomsma. 2005. Heritability estimates of innate immunity: An extended twin study. Genes and Immunity 6: 167–170. https://doi.org/10.1038/sj.gene.6364162.

    Article  CAS  PubMed  Google Scholar 

  15. Brull, D.J., H.E. Montgomery, J. Sanders, S. Dhamrait, L. Luong, A. Rumley, G.D. Lowe, and S.E. Humphries. 2001. Interleukin-6 gene -174g>c and -572g>c promoter polymorphisms are strong predictors of plasma interleukin-6 levels after coronary artery bypass surgery. Arteriosclerosis, Thrombosis, and Vascular Biology 21: 1458–1463. https://doi.org/10.1161/hq0901.094280.

    Article  CAS  PubMed  Google Scholar 

  16. Libra, M., S.S. Signorelli, Y. Bevelacqua, P.M. Navolanic, V. Bevelacqua, J. Polesel, R. Talamini, F. Stivala, M.C. Mazzarino, and G. Malaponte. 2006. Analysis of G(-174)C IL-6 polymorphism and plasma concentrations of inflammatory markers in patients with type 2 diabetes and peripheral arterial disease. Journal of Clinical Pathology 59: 211–215. https://doi.org/10.1136/jcp.2004.025452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sen, A., S.K. Paine, I.H. Chowdhury, A. Mukherjee, S. Choudhuri, A. Saha, L.K. Mandal, and B. Bhattacharya. 2011. Impact of interleukin-6 promoter polymorphism and serum interleukin-6 level on the acute inflammation and neovascularization stages of patients with Eales’ disease. Molecular Vision 17: 2552–2563.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Talar-Wojnarowska, R., A. Gasiorowska, B. Smolarz, H. Romanowicz-Makowska, A. Kulig, and E. Malecka-Panas. 2009. Clinical significance of interleukin-6 (IL-6) gene polymorphism and IL-6 serum level in pancreatic adenocarcinoma and chronic pancreatitis. Digestive Diseases and Sciences 54: 683–689. https://doi.org/10.1007/s10620-008-0390-z.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, G., B. Zhou, W. Wang, M. Zhang, Y. Zhao, Z. Wang, L. Yang, J. Zhai, C.G. Feng, J. Wang, and X. Chen. 2012. A functional single-nucleotide polymorphism in the promoter of the gene encoding interleukin 6 is associated with susceptibility to tuberculosis. Journal of Infectious Diseases 205: 1697–1704. https://doi.org/10.1093/infdis/jis266.

    Article  CAS  PubMed Central  Google Scholar 

  20. Panayides, A., A. Ioakeimidou, V. Karamouzos, N. Antonakos, I. Koutelidakis, G. Giannikopoulos, K. Makaritsis, N. Voloudakis, K. Toutouzas, N. Rovina, M. Bristianou, G. Damoraki, C. Routsi, and E.J. Giamarellos-Bourboulis. 2015. Hellenic Sepsis Study Group. -572 G/C single nucleotide polymorphism of interleukin-6 and sepsis predisposition in chronic renal disease. European Journal of Clinical Microbiology & Infectious Diseases 34:2439–46. https://doi.org/10.1007/s10096-015-2500-0.

  21. Fang, M., Y. Huang, Y. Zhang, Z. Ning, L. Zhu, and X. Li. 2017. Interleukin-6 -572C/G polymorphism is associated with serum interleukin-6 levels and risk of idiopathic pulmonary arterial hypertension. Journal of the American Society of Hypertension 11: 171–177. https://doi.org/10.1016/j.jash.2017.01.011.

    Article  CAS  PubMed  Google Scholar 

  22. Yuan, A., J. Li, P. Liu, Z. Chen, M. Hou, J. Wang, and Z. Han. 2015. Association of interleukin-6-572C/G gene polymorphism and serum or cerebrospinal fluid interleukin-6 level with enterovirus 71 encephalitis in Chinese Han patients with hand, foot, and mouth disease. Inflammation 38: 728–735. https://doi.org/10.1007/s10753-014-9983-1.

    Article  CAS  PubMed  Google Scholar 

  23. Shin, K.K., Y. Jang, S.J. Koh, J.S. Chae, O.Y. Kim, S. Park, D. Choi, D.J. Shin, H.J. Kim, and J.H. Lee. 2007. Influence of the IL-6 -572C>G polymorphism on inflammatory markers according to cigarette smoking in Korean healthy men. Cytokine 39: 116–122. https://doi.org/10.1016/j.cyto.2007.06.005.

    Article  CAS  PubMed  Google Scholar 

  24. Burzotta, F., L. Iacoviello, A. Di Castelnuovo, F. Glieca, N. Luciani, R. Zamparelli, R. Schiavello, M.B. Donati, A. Maseri, G. Possati, and F. Andreotti. 2001. Relation of the -174 G/C polymorphism of interleukin-6 to interleukin-6 plasma levels and to length of hospitalization after surgical coronary revascularization. American Journal of Cardiology 88: 1125–1128. https://doi.org/10.1016/s0002-9149(01)02046-x.PMID.

    Article  CAS  Google Scholar 

  25. Hulkkonen, J., M. Pertovaara, J. Antonen, A. Pasternack, and M. Hurme. 2001. Elevated interleukin-6 plasma levels are regulated by the promoter region polymorphism of the IL6 gene in primary Sjögren’s syndrome and correlate with the clinical manifestations of the disease. Rheumatology (Oxford) 40: 656–661. https://doi.org/10.1093/rheumatology/40.6.656.

    Article  CAS  Google Scholar 

  26. Eddahibi, S., A. Chaouat, L. Tu, C. Chouaid, E. Weitzenblum, B. Housset, B. Maitre, and S. Adnot. 2006. Interleukin-6 gene polymorphism confers susceptibility to pulmonary hypertension in chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society 3 (6): 475–476. https://doi.org/10.1513/pats.200603-038MS.

    Article  PubMed  Google Scholar 

  27. Zhao, Q., M. Jin, D.W. Zhang, W. Zhao, X.S. Wang, Z.X. Yue, C. Duan, C. Huang, and X.L. Ma. 2018. Serum interleukin-6 level and the rs1800795 polymorphism in its gene associated with neuroblastoma risk in Chinese children. Chinese Medical Journal (Engl) 131: 1075–1078. https://doi.org/10.4103/0366-6999.230719.

    Article  CAS  Google Scholar 

  28. Talaat, R.M., A.M. Abdel-Aziz, E.A. El-Maadawy, and N. Abdel-Bary. 2015. CD38 and interleukin 6 gene polymorphism in Egyptians with diffuse large B-cell lymphoma (DLBCL). Immunological Investigations 44: 265–278. https://doi.org/10.3109/08820139.2014.989328.

    Article  CAS  PubMed  Google Scholar 

  29. Wypasek, E., A. Undas, M. Sniezek-Maciejewska, B. Kapelak, D. Plicner, E. Stepien, and J. Sadowski. 2010. The increased plasma C-reactive protein and interleukin-6 levels in patients undergoing coronary artery bypass grafting surgery are associated with the interleukin-6-174G > C gene polymorphism. Annals of Clinical Biochemistry 47: 343–349. https://doi.org/10.1258/acb.2010.090305.

    Article  CAS  PubMed  Google Scholar 

  30. Galimudi, R.K., M.K. Spurthi, C. Padala, K.G. Kumar, S. Mudigonda, S.G. Reddy, M.T. Aiyengar, S.K. Sahu, and S.H. Rani. 2014. Interleukin 6(-174G/C) variant and its circulating levels in coronary artery disease patients and their first degree relatives. Inflammation 37: 314–321. https://doi.org/10.1007/s10753-013-9742-8.

    Article  CAS  PubMed  Google Scholar 

  31. Boiardi, L., B. Casali, E. Farnetti, N. Pipitone, D. Nicoli, F. Cantini, P. Macchioni, G. Bajocchi, M.G. Catanoso, L. Pulsatelli, D. Consonni, and C. Salvarani. 2006. Relationship between interleukin 6 promoter polymorphism at position -174, IL-6 serum levels, and the risk of relapse/recurrence in polymyalgia rheumatica. Journal of Rheumatology 33: 703–708.

    CAS  Google Scholar 

  32. Kilpinen, S., J. Hulkkonen, X.Y. Wang, and M. Hurme. 2001. The promoter polymorphism of the interleukin-6 gene regulates interleukin-6 production in neonates but not in adults. European Cytokine Network 12: 62–68.

    CAS  PubMed  Google Scholar 

  33. Potaczek, D.P., A. Undas, M. Celinska-Lowenhoff, and A. Szczeklik. 2006. Interleukin-6 -174 G/C promoter polymorphism and effects of fenofibrate and simvastatin on inflammatory markers in hypercholesterolemic patients. Blood Coagulation & Fibrinolysis 17: 35–38. https://doi.org/10.1097/01.mbc.0000198052.65505.00.

    Article  CAS  Google Scholar 

  34. Sanderson, S.C., M. Kumari, E.J. Brunner, M.A. Miller, A. Rumley, G.D. Lowe, M.G. Marmot, and S.E. Humphries. 2009. Association between IL6 gene variants -174G>C and -572G>C and serum IL-6 levels: Interactions with social position in the Whitehall II cohort. Atherosclerosis 204: 459–464. https://doi.org/10.1016/j.atherosclerosis.2008.09.019.

    Article  CAS  PubMed  Google Scholar 

  35. Mälarstig, A., L. Wallentin, and A. Siegbahn. 2007. Genetic variation in the interleukin-6 gene in relation to risk and outcomes in acute coronary syndrome. Thrombosis Research 119: 467–473. https://doi.org/10.1016/j.thromres.2006.05.001.

    Article  CAS  PubMed  Google Scholar 

  36. Bi, D., M. Chen, X. Zhang, H. Wang, L. Xia, Q. Shang, T. Li, D. Zhu, K. Blomgren, L. He, X. Wang, Q. Xing, and C. Zhu. 2014. The association between sex-related interleukin-6 gene polymorphisms and the risk for cerebral palsy. Journal of Neuroinflammation 11: 100. https://doi.org/10.1186/1742-2094-11-100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, X., L. Ma, F. Peng, Y. Wu, Y. Chen, L. Yu, Z. Lei, and C. Zhang. 2011. The endothelial dysfunction in patients with type 2 diabetes mellitus is associated with IL-6 gene promoter polymorphism in Chinese population. Endocrine 40: 124–129. https://doi.org/10.1007/s12020-011-9442-9.

    Article  CAS  PubMed  Google Scholar 

  38. Williams, P.T. 2012. Quantile-specific penetrance of genes affecting lipoproteins, adiposity and height. PLoS ONE 7: e28764. https://doi.org/10.1371/journal.pone.0028764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Williams, P.T. 2020. Gene-environment interactions due to quantile-specific heritability of triglyceride and VLDL concentrations. Scientific Reports 10: 4486. https://doi.org/10.1038/s41598-020-60965-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Williams, P.T. 2020. Quantile-dependent expressivity of plasma adiponectin concentrations may explain its sex-specific heritability, gene-environment interactions, and genotype-specific response to postprandial lipemia. PeerJ 8: e10099. https://doi.org/10.7717/peerj.10099.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Williams, P.T. 2020. Quantile-specific heritability of sibling leptin concentrations and its implications for gene-environment interactions. Science and Reports 10: 22152. https://doi.org/10.1038/s41598-020-79116-1.

    Article  CAS  Google Scholar 

  42. Williams, P.T. 2020. Quantile-dependent heritability of computed tomography, dual-energy x-ray absorptiometry, anthropometric, and bioelectrical measures of adiposity. Int J Obesity 44: 2101–2112. https://doi.org/10.1038/s41366-020-0636-1.

    Article  CAS  Google Scholar 

  43. Williams, P.T. 2021. Quantile-specific heritability of plasminogen activator inhibitor type-1 (PAI-1, aka SERPINE1) and other hemostatic factors. Journal of Thrombosis and Haemostasis. 2021 (in press). https://doi.org/10.1111/jth.15468.

  44. Williams, P.T. 2021. Quantile-dependent expressivity of serum C-reactive protein concentrations in family sets. PeerJ 9: e10914. https://doi.org/10.7717/peerj.10914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Williams, P.T. 2021. Quantile-dependent expressivity and gene-lifestyle interactions involving high-density lipoprotein cholesterol. Lifestyle Genom. 14 (1): 1–19. https://doi.org/10.1159/000511421.

    Article  CAS  PubMed  Google Scholar 

  46. Williams, P.T. 2020. Quantile-specific heritability of total cholesterol and its pharmacogenetic and nutrigenetic implications. International Journal of Cardiology S0167–5273 (20): 34241–34248. https://doi.org/10.1016/j.ijcard.2020.11.070.

    Article  Google Scholar 

  47. Williams, P.T. 2020. Quantile-specific heritability of high-density lipoproteins with implications for precision medicine. Journal of Clinical Lipidology 14: 448-458.e0. https://doi.org/10.1016/j.jacl.2020.05.099.

  48. Koenker, R., and K.F. Hallock. 2001. Quantile regression. Journal Economic Perspectives 15: 143–156.

  49. Kannel, W.B., M. Feinleib, P.M. McNamara, R.J. Garrison, and W.P. Castelli. 2006. An investigation of coronary heart disease in families. The Framingham offspring study. American Journal of Epidemiology 110:281–90.

  50. Splansky, G.L., D. Corey, Q. Yang, L.D. Atwood, L.A. Cupples, E.J. Benjamin, et al. 2007. The Third Generation Cohort of the National Heart, Lung, and Blood Institute’s Framingham Heart Study: Design, recruitment, and initial examination. American Journal of Epidemiology 165: 1328–1335. https://doi.org/10.1093/aje/kwm021.

    Article  PubMed  Google Scholar 

  51. Falconer, D.S., and T.F.C. Mackay. 1996. Introduction to quantitative genetics (fourth ed.) Longmans Green, Harlow, Essex, UK.

  52. Shah, T., D. Zabaneh, T. Gaunt, D.I. Swerdlow, S. Shah, P.J. Talmud, I.N. Day, J. Whittaker, M.V. Holmes, R. Sofat, S.E. Humphries, M. Kivimaki, M. Kumari, A.D. Hingorani, and J.P. Casas. 2013. Gene-centric analysis identifies variants associated with interleukin-6 levels and shared pathways with other inflammation markers. Circulation. Cardiovascular Genetics 6: 163–170. https://doi.org/10.1161/CIRCGENETICS.112.964254.

    Article  CAS  PubMed  Google Scholar 

  53. Karlin, S., E.C. Cameron, and P.T. Williams. 1981. Sibling and parent-offspring correlation estimation with variable family size. Proceedings of the National academy of Sciences of the United States of America 78: 2664–2668.

    Article  CAS  Google Scholar 

  54. Gould, W.W. 1992. Quantile regression with bootstrapped standard errors. Stata Technical Bulletin. 9: 19–21.

    Google Scholar 

  55. Winer, B.J., D.R. Brown, and K.M. Michels. 1991. Statistical principles in experimental design. Third edition. McGraw-Hill New York.

  56. Yang, H., X. Zhou, D. Xu, and G. Chen. 2020. The IL-6 rs12700386 polymorphism is associated with an increased risk of developing osteoarthritis in the knee in the Chinese Han population: A case-control study. BMC Medical Genetics 21: 199. https://doi.org/10.1186/s12881-020-01139-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wypasek, E., E. Stepien, M. Kot, D. Plicner, B. Kapelak, J. Sadowski, and A. Undas. 2012. Fibrinogen beta-chain -C148T polymorphism is associated with increased fibrinogen, C-reactive protein, and interleukin-6 in patients undergoing coronary artery bypass grafting. Inflammation 35: 429–435. https://doi.org/10.1007/s10753-011-9332-6.

    Article  CAS  PubMed  Google Scholar 

  58. Williams, P.T. 2020. Quantile-dependent expressivity of postprandial lipemia. PLoS ONE 15: e0229495. https://doi.org/10.1371/journal.pone.0229495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fishman, D., G. Faulds, R. Jeffery, V. Mohamed-Ali, J.S. Yudkin, S. Humphries, and P. Woo. 1998. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. The Journal of Clinical Investigation 102: 1369–1376. https://doi.org/10.1172/JCI2629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brevetti, G., A. Silvestro, S. Di Giacomo, R. Bucur, A. Di Donato, V. Schiano, and F. Scopacasa. 2003. Endothelial dysfunction in peripheral arterial disease is related to increase in plasma markers of inflammation and severity of peripheral circulatory impairment but not to classic risk factors and atherosclerotic burden. Journal of Vascular Surgery 38: 374–379. https://doi.org/10.1016/s0741-5214(03)00124-1.

    Article  PubMed  Google Scholar 

  61. Lippitz, B. E., and Harris, R. A. 2016. Cytokine patterns in cancer patients: a review of the correlation between interleukin 6 and prognosis. Oncoimmunology 5:e1093722.

  62. Gu, W., D.Y. Du, J. Huang, et al. 2008. Identification of interleukin-6 promoter polymorphisms in the Chinese Han population and their functional significance. Critical Care Medicine 36: 1437–1443.

    Article  CAS  Google Scholar 

  63. Humbert, M., G. Monti, F. Brenot, O. Sitbon, A. Portier, L. Grangeot-Keros, P. Duroux, P. Galanaud, G. Simonneau, and D. Emilie. 1995. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine 151: 1628–1631. https://doi.org/10.1164/ajrccm.151.5.7735624.

    Article  CAS  PubMed  Google Scholar 

  64. Soon, E., A.M. Holmes, C.M. Treacy, N.J. Doughty, L. Southgate, R.D. Machado, et al. 2010. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation 122: 920–927.

    Article  CAS  Google Scholar 

  65. Takač, B., S. Mihaljević, L. Glavaš-Obrovac, A. Kibel, M. Suver-Stević, S. Canecki-Varžić, M. Samardžija, I. Rajkovac, D. Kovač, and M. Štefanić. 2020. Interactions among interleukin-6, C-reactive protein, and interleukin-6 (-174) G/C polymorphism in the pathogenesis of Crohn’s disease and ulcerative colitis. Acta Clinica Croatica 59: 67–80. https://doi.org/10.20471/acc.2020.59.01.09.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wielińska, J., M. Dratwa, J. Świerkot, L. Korman, M. Iwaszko, B. Wysoczańska, and K. Bogunia-Kubik. 2018. Interleukin 6 gene polymorphism is associated with protein serum level and disease activity in Polish patients with rheumatoid arthritis. HLA. 92 (Suppl 2): 38–41. https://doi.org/10.1111/tan.13355.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The Framingham Heart Study was conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with Boston University (Contract Nos. N01-HC-25195 and HHSN268201500001I). This manuscript was not prepared in collaboration with investigators of the Framingham Heart Study and does not necessarily reflect the opinions or views of the Framingham Heart Study, Boston University, or NHLBI. This research was supported by grant R21ES020700 from the National Institute of Environmental Health Sciences, and an unrestricted gift from HOKA ONE ONE. The funders had no role in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The author (PTW) was responsible for the project conception, development of overall research plan, analyzing data including performed the statistical analysis, and writing of the paper.

Corresponding author

Correspondence to Paul T. Williams.

Ethics declarations

Ethics Approval and Consent to Participate (Human Ethics, Animal Ethics, or Plant Ethics)

Lawrence Berkeley National Laboratory Human Subjects Committee (HSC) approved the analyses of these data for protocol “Gene-environment interaction vs. quantile-dependent penetrance of established SNPs (107H021)” LBNL holds Office of Human Research Protections Federal-Wide Assurance number FWA 00006253. Approval number 107H021-13MR20.

Consent for Publication

Not applicable.

Consent to Participate

All surveys were conducted under the direction of the Framingham Heart Study human use committee guidelines, with signed informed consent from all participants or parent and/or legal guardian if < 18 years of age.

Competing Interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

SUPPLEMENTARY INFORMATION

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 51 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, P.T. Quantile-Dependent Expressivity of Serum Interleukin-6 Concentrations as a Possible Explanation of Gene-Disease Interactions, Gene-Environment Interactions, and Pharmacogenetic Effects. Inflammation 45, 1059–1075 (2022). https://doi.org/10.1007/s10753-021-01601-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01601-0

KEY WORDS

Navigation