Skip to main content

Advertisement

Log in

Understanding the Role of Inflammasomes in Rheumatoid Arthritis

  • Review
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Inflammasomes are the molecular pathways that activate upon conditions of infection or stress and trigger the activation and maturation of inflammatory cytokines. Immune reactions in conjugation with inflammatory processes play a pivotal role in developing innumerable diseases. An over reactive immune system fabricates many allergic and hypersensitive reactions in response to autoantibodies activated against modified self-epitopes and similar molecules. Rheumatoid arthritis (RA) is a complex autoimmune inflammatory disorder commencing with inflammation in small joints like hands, knees, and wrist eventually entrapping larger joints such as spine. The formation of autoantibodies called rheumatoid factor (RF) and citrullinated proteins against immunoglobulin G symbolizes autoimmune nature of the disease. The presence of autoantibodies embarks principal diagnostic hallmark of the disease. With the advancement of technology, the therapeutic approach is also advancing. A new era of molecules, namely inflammasomes, are activated upon infection or in response to stress and trigger the activation of various proinflammatory cytokines such interleukins which engage in the defense mechanism of the innate immunity. Robust linking among the activity of dysregulated inflammasomes and the heritable acquired inflammatory diseases and disorders emphasizes the significance of this pathway in altering the immune responses. The current review highlights the functioning of inflammasomes and their possible role in disease dysregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abi-Rached, L., M.J. Jobin, S. Kulkarni, A. McWhinnie, and K. Dalva. 2011. The shaping of modern human immune systems by multiregional admixture with archaic humans. Science. 334: 89–94.

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Anić, B., and M. Mayer. 2014. Pathogenesis of rheumatoid arthritis. Reumatizam. 61 (2): 19–23.

    Google Scholar 

  3. Firestein, G.S. 2003. Evolving concepts of rheumatoid arthritis. Nature. 423: 356–361.

    PubMed  CAS  Google Scholar 

  4. Smolen, J.S., D. Aletaha, and I.B. McInnes. 2016. Rheumatoid arthritis. Lancet 388: 2023–2038.

    PubMed  CAS  Google Scholar 

  5. Gibofsky, A. 2012. Overview of epidemiology, pathophysiology, and diagnosis of rheumatoid arthritis. Am J Manag Care 18: 295–302.

    Google Scholar 

  6. Cooles, F.A., and J.D. Isaacs. 2011. Pathophysiology of rheumatoid arthritis. Current opinion in rheumatology. 23 (3): 233–240.

    PubMed  CAS  Google Scholar 

  7. García-González, Adolfo, Ramón Gaxiola-Robles, and Tania Zenteno-Savín. 2015. Oxidative stress in patients with rheumatoid arthritis. Revista de Investigación Clínica. 67 (1): 46–53.

    PubMed  Google Scholar 

  8. Alippe Y, Mbalaviele G, 2019. Omnipresence of inflammasome activities in inflammatory bone diseases. In Seminars in immunopathology. Springer Berlin Heidelberg. pp. 1–12.

  9. Méndez-Frausto G, Medina-Rosales MN, Uresti-Rivera EE, Baranda-Cándido L, Zapata-Zúñiga M, Bastián Y, Amaro RG, Enciso-Moreno JA, García-Hernández MH, 2019. Expression and activity of AIM2-inflammasome in rheumatoid arthritis patients. Immunobiology.

  10. Kate, S., and T. Jurg. 2010. The inflammasomes. Cell 140: 821–832.

    Google Scholar 

  11. Dong, X., Z. Zheng, P. Lin, X. Fu, F. Li, J. Jiang, and P. Zhu. 2019. ACPAs promote IL-1β production in rheumatoid arthritis by activating the NLRP3 inflammasome. Cellular & Molecular Immunology 25: 1.

    CAS  Google Scholar 

  12. Yang, Z., J. Cao, C. Yu, Q. Yang, Y. Zhang, and L. Han. 2016. Caspase-1 mediated interleukin-18 activation in neutrophils promotes the activity of rheumatoid arthritis in a NLRP3 inflammasome independent manner. Joint, Bone, Spine 83 (3): 282–289.

    CAS  Google Scholar 

  13. Choulaki, C., G. Papadaki, A. Repa, E. Kampouraki, K. Kambas, K. Ritis, G. Bertsias, D.T. Boumpas, and P. Sidiropoulos. 2015. Enhanced activity of NLRP3 inflammasome in peripheral blood cells of patients with active rheumatoid arthritis. Arthritis Research & Therapy 17 (1): 257.

    Google Scholar 

  14. Kastbom, A., L. Ärlestig, and S. Rantapää-Dahlqvist. 2015. Genetic variants of the NLRP3 inflammasome are associated with stroke in patients with rheumatoid arthritis. The Journal of Rheumatology. 42 (10): 1740–1745.

    PubMed  CAS  Google Scholar 

  15. Siebert, S., A. Tsoukas, J. Robertson, and I. McInnes. 2015. Cytokines as therapeutic targets in rheumatoid arthritis and other inflammatory diseases. Pharmacol Rev 67: 280–309.

    PubMed  CAS  Google Scholar 

  16. Malik, A., and T.D. Kanneganti. 2017. Inflammasome activation and assembly at a glance. Journal of Cell Science 130 (23): 3955–3963.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Guo, H., J.B. Callaway, and J.P. Ting. 2015. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nature medicine. 21 (7): 677–687.

    PubMed  PubMed Central  Google Scholar 

  18. Smolen, J.S., D. Aletaha, M. Koeller, M.H. Weisman, and P. Emery. 2007. New therapies for treatment of rheumatoid arthritis. Lancet 370: 1861–1874.

    PubMed  CAS  Google Scholar 

  19. Latz, E., T.S. Xiao, and A. Stutz. 2013. Activation and regulation of the inflammasomes. Nature Reviews. Immunology 13: 397–411.

    PubMed  CAS  Google Scholar 

  20. Dekkers, J., R.E. Toes, T.W. Huizinga, and D. van der Woude. 2016. The role of anticitrullinated protein antibodies in the early stages of rheumatoid arthritis. Current Opinion in Rheumatology 28: 275–281.

    PubMed  CAS  Google Scholar 

  21. McInnes, I.B., and G. Schett. 2011. The pathogenesis of rheumatoid arthritis. N Engl J Med 365: 2205–2219.

    PubMed  CAS  Google Scholar 

  22. Schroder, K., and J. Tschopp. 2010. The inflammasomes. Cell. 140: 821–832.

    PubMed  CAS  Google Scholar 

  23. Saleh, M. 2006. Caspase-1 builds a new barrier to infection. Cell. 126: 1028–1030.

    PubMed  CAS  Google Scholar 

  24. Poreba, M., A. Strozyk, G.S. Salvesen, et al. 2013. Caspase substrates and inhibitors. Perspect Biol. 5: a008680.

    Google Scholar 

  25. Joosten, L.A., T.R. Radstake, E. Lubberts, et al. 2003. Association of interleukin-18 expres-sion with enhanced levels of both interleukin-1beta and tumor necrosis factor alpha in knee synovial tissue of patients with rheumatoid arthritis. ArthritisRheum. 48: 339–347.

    CAS  Google Scholar 

  26. Helmick, C.G., D.T. Felson, R.C. Lawrence, S. Gabriel, R. Hirsch, C.K. Kwoh, M.H. Liang, H.M. Kremers, M.D. Mayes, P.A. Merkel, S.R. Pillemer, J.D. Reveille, and J.H. Stone. 2008. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum 58: 15–25.

    PubMed  Google Scholar 

  27. Zaki, M.H., M. Lamkanfi, and T.D. Kanneganti. 2011. The Nlrp3 inflammasome: contributionsto intestinal homeostasis. Trends Immunol 32: 171–179.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Mathews, R.J., J.I. Robinson, M. Battellino, et al. 2014. Evidence of NLRP3-inflammasome activation in rheumatoid arthritis (RA); genetic variantswithin the NLRP3-inflammasome complex in relation to susceptibilityto RA and response to anti-TNF treatment. Ann Rheum Dis 73: 1202–1210.

    PubMed  CAS  Google Scholar 

  29. Allen, I.C., E.M. TeKippe, R.M. Woodford, et al. 2010. The NLRP3 inflammasome functionsas a negative regulator of tumorigenesis during colitis-associated cancer. J ExpMed 207: 1045–1056.

    CAS  Google Scholar 

  30. Hirota, S.A., J. Ng, A. Lueng, et al. 2011. NLRP3 inflammasome plays a key rolein the regulation of intestinal homeostasis. Inflamm Bowel Dis 17: 1359–1372.

    PubMed  Google Scholar 

  31. Martinon, F., K. Burns, and J. Tschopp. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell 10: 417–426.

    PubMed  CAS  Google Scholar 

  32. Mariathasan, S., K. Newton, D.M. Monack, D. Vucic, D.M. French, W.P. Lee, M. Roose-Girma, S. Erickson, and V.M. Dixit. 2004. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature. 430: 213–218.

    PubMed  CAS  Google Scholar 

  33. Zhao, Y., J. Yang, J. Shi, Y.N. Gong, Q. Lu, H. Xu, L. Liu, and F. Shao. 2011. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature. 477: 596–600.

    PubMed  CAS  Google Scholar 

  34. Muruve, D.A., V. Petrilli, A.K. Zaiss, L.R. White, S.A. Clark, P.J. Ross, R.J. Parks, and J. Tschopp. 2008. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature. 452: 103–107.

    PubMed  CAS  Google Scholar 

  35. Alnemri, E.S. 2010. Sensing cytoplasmic danger signals by the inflammasome. J Clin Immunol 30: 512–519.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Shin, M.S., Y. Kang, N. Lee, S.H. Kim, K.S. Kang, R. Lazova, and I. Kang. 2012. U1- small nuclear ribonucleoprotein activates the NLRP3 inflammasome in human monocytes. J Immunol 188: 4769–4775.

    PubMed  CAS  Google Scholar 

  37. Yang, Q., C. Yu, Z. Yang, Q. Wei, K. Mu, Y. Zhang, W. Zhao, X. Wang, W. Huai, and L. Han. 2014. Deregulated NLRP3 and NLRP1 inflammasomes and their correlations with disease activity in systemic lupus erythematosus. J Rheumatol 41: 444–452.

    PubMed  CAS  Google Scholar 

  38. Zhao, J., H. Zhang, Y. Huang, H. Wang, S. Wang, C. Zhao, Y. Liang, and N. Yang. 2013. Bay11-7082 attenuates murine lupus nephritis via inhibiting NLRP3 inflammasome and NF-κB activation. Int Immunopharmacol 17: 116–122.

    PubMed  CAS  Google Scholar 

  39. Gombault, A., L. Baron, and I. Couillin. 2013. ATP release and purinergic signaling in NLRP3 inflammasome activation. Frontiers in Immunology 3: 414.

    PubMed  PubMed Central  Google Scholar 

  40. Niu, L., S. Zhang, J. Wu, L. Chen, and Y. Wang. 2015. Upregulation of NLRP3 inflammasome in the tears and ocular surface of dry eye patients. PLoS One 10: e0126277.

    PubMed  PubMed Central  Google Scholar 

  41. Griffith, J.W., T. Sun, M.T. McIntosh, and R. Bucala. 2009. Pure Hemozoin is inflammatory in vivo and activates the NALP3 inflammasome via release of uric acid. Journal of Immunology 183: 5208–5220.

    CAS  Google Scholar 

  42. Gross, O., H. Poeck, M. Bscheider, C. Dostert, N. Hannesschläger, S. Endres, G. Hartmann, A. Tardivel, E. Schweighoffer, V. Tybulewicz, et al. 2009. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459: 433–436.

    PubMed  CAS  Google Scholar 

  43. Guarda, G., C. Dostert, F. Staehli, K. Cabalzar, R. Castillo, A. Tardivel, P. Schneider, and J. Tschopp. 2009. T cells dampen innate immune responses through inhibition of NLRP1 and NLRP3 inflammasomes. Nature 460: 269–273.

    PubMed  CAS  Google Scholar 

  44. Arnoult, D., F. Soares, I. Tattoli, C. Castanier, D.J. Philpott, and S.E. Girardin. 2009. An N-terminal addressing sequence targets NLRX1 to the mitochondrial matrix. Journal of Cell Science 122: 3161–3168.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Martinon, F., K. Burns, and J. Tschopp. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular Cell 10 (2): 417–426.

    PubMed  CAS  Google Scholar 

  46. Dinarello, C.A. 2019. The IL-1 family of cytokines and receptors in rheumatic diseases. Nature Reviews Rheumatology 15 (10): 612–632.

    PubMed  CAS  Google Scholar 

  47. Broz, P., and V.M. Dixit. 2016. Inflammasomes: mechanism of assembly, regulation and signalling. Nature Reviews. Immunology 16 (7): 407–420.

    PubMed  CAS  Google Scholar 

  48. Harapas, C.R., A. Steiner, S. Davidson, and S.L. Masters. 2018. An update on autoinflammatory diseases: inflammasomopathies. Current Rheumatology Reports 20 (7): 40.

    PubMed  Google Scholar 

  49. Latz E, Duewell P, 2018. NLRP3 inflammasome activation in inflammaging. Semin Immunol.40:61-73.

  50. Shin, J.I., K.H. Lee, Y.H. Joo, et al. 2019. Inflammasomes and autoimmune and rheumatic diseases: a comprehensive review. J Autoimmun 103: 102299.

    PubMed  CAS  Google Scholar 

  51. Martinon, F., and J. Tschopp. 2005. NLRs join TLRs as innate sensors of pathogens. Trends in Immunology 26 (8): 447–454.

    PubMed  CAS  Google Scholar 

  52. Burdett, H., A.R. Bentham, S.J. Williams, P.N. Dodds, P.A. Anderson, M.J. Banfield, and B. Kobe. 2019. The plant “Resistosome”: structural insights into immune signaling. Cell Host & Microbe 26 (2): 193–201.

    CAS  Google Scholar 

  53. Wang, J., M. Hu, J. Wang, et al. 2019. Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364 (6435): eaav5870.

    PubMed  CAS  Google Scholar 

  54. MacDonald, J.A., C.P. Wijekoon, K.C. Liao, and D.A. Muruve. 2013. Biochemical and structural aspects of the ATP-binding domain in inflammasome-forming human NLRP proteins. IUBMB Life 65 (10): 851–862.

    PubMed  CAS  Google Scholar 

  55. Duncan, J.A., and S.W. Canna. 2018. The NLRC4 inflammasome. Immunological Reviews 281 (1): 115–123.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Petrilli, V., S. Papin, C. Dostert, A. Mayor, F. Martinon, and J. Tschopp. 2007. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death and Differentiation 14 (9): 1583–1589.

    PubMed  CAS  Google Scholar 

  57. Chen, J., and Z.J. Chen. 2018. PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature. 564 (7734): 71–76.

    PubMed  CAS  Google Scholar 

  58. Swanson, K.V., M. Deng, and J.P. Ting. 2019. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nature Reviews. Immunology 19 (8): 477–489.

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Hoffman, H.M., J.L. Mueller, D.H. Broide, A.A. Wanderer, and R.D. Kolodner. 2001. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle- Wells syndrome. Nature Genetics 29 (3): 301–305.

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Booshehri, L.M., and H.M. Hoffman. 2019. CAPS and NLRP3. Journal of Clinical Immunology 39 (3): 277–286.

    PubMed  PubMed Central  Google Scholar 

  61. Agostini, L., F. Martinon, K. Burns, M.F. McDermott, P.N. Hawkins, and J. Tschopp. 2004. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity. 20 (3): 319–325.

    PubMed  CAS  Google Scholar 

  62. Boyden, E.D., and W.F. Dietrich. 2006. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nature Genetics 38 (2): 240–244.

    PubMed  CAS  Google Scholar 

  63. Okondo, M.C., S.D. Rao, C.Y. Taabazuing, et al. 2018. Inhibition of Dpp8/9 activates the Nlrp1b inflammasome. Cell Chem Biol 25 (3): 262–267 e5.

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Mitchell, P.S., A. Sandstrom, and R.E. Vance. 2019. The NLRP1 inflammasome: new mechanistic insights and unresolved mysteries. Current Opinion in Immunology 60: 37–45.

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Zhong, F.L., O. Mamaï, L. Sborgi, et al. 2016. Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via inflammasome activation. Cell 167 (1): 187–202 e17.

    PubMed  CAS  Google Scholar 

  66. Grandemange, S., E. Sanchez, P. Louis-Plence, F. Tran Mau-Them, D. Bessis, C. Coubes, E. Frouin, M. Seyger, M. Girard, J. Puechberty, V. Costes, M. Rodière, A. Carbasse, E. Jeziorski, P. Portales, G. Sarrabay, M. Mondain, C. Jorgensen, F. Apparailly, E. Hoppenreijs, I. Touitou, and D. Geneviève. 2017. A new autoinflammatory and autoimmune syndrome associated with NLRP1 mutations: NAIAD (NLRP1-associated autoinflammation with arthritis and dyskeratosis). Annals of the Rheumatic Diseases 76 (7): 1191–1198.

    PubMed  CAS  Google Scholar 

  67. Jin, Y., C.M. Mailloux, K. Gowan, S.L. Riccardi, G. LaBerge, D.C. Bennett, P.R. Fain, and R.A. Spritz. 2007. NALP1 in vitiligo-associated multiple autoimmune disease. The New England Journal of Medicine 356 (12): 1216–1225.

    PubMed  CAS  Google Scholar 

  68. Yu, C.H., J. Moecking, M. Geyer, and S.L. Masters. 2018. Mechanisms of NLRP1- mediated autoinflammatory disease in humans and mice. Journal of Molecular Biology 430 (2): 142–152.

    PubMed  CAS  Google Scholar 

  69. Pathan, N., H. Marusawa, M. Krajewska, S.I. Matsuzawa, H. Kim, K. Okada, S. Torii, S. Kitada, S. Krajewski, K. Welsh, F. Pio, A. Godzik, and J.C. Reed. 2001. TUCAN, an antiapoptotic caspase-associated recruitment domain family protein overexpressed in cancer. The Journal of Biological Chemistry 276 (34): 32220–32229.

    PubMed  CAS  Google Scholar 

  70. Bagnall, R.D., R.G. Roberts, M.M. Mirza, T. Torigoe, N.J. Prescott, and C.G. Mathew. 2008. Novel isoforms of the CARD8 (TUCAN) gene evade a nonsense mutation. European Journal of Human Genetics 16 (5): 619–625.

    PubMed  CAS  Google Scholar 

  71. Johnson, D.C., C.Y. Taabazuing, M.C. Okondo, et al. 2018. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat Med. 24 (8): 1151–1156.

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Ito, S., Y. Hara, and T. Kubota. 2014. CARD8 is a negative regulator for NLRP3 inflammasome, but mutant NLRP3 in cryopyrin-associated periodic syndromes escapes the restriction. Arthritis Research & Therapy 16 (1): R52.

    Google Scholar 

  73. Fontalba, A., V. Martinez-Taboada, O. Gutierrez, C. Pipaon, N. Benito, A. Balsa, R. Blanco, and J.L. Fernandez-Luna. 2007. Deficiency of the NF-kappaB inhibitor caspase activating and recruitment domain 8 in patients with rheumatoid arthritis is associated with disease severity. Journal of Immunology 179 (7): 4867–4873.

    CAS  Google Scholar 

  74. Muruve, D.A., V. Pétrilli, A.K. Zaiss, L.R. White, S.A. Clark, P.J. Ross, R.J. Parks, and J. Tschopp. 2008. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452: 103–107.

    PubMed  CAS  Google Scholar 

  75. Newman, Z.L., S.H. Leppla, and M. Moayeri. 2009. CA-074Me protection against anthrax lethal toxin. Infection and Immunity 77: 4327–4336.

    PubMed  PubMed Central  CAS  Google Scholar 

  76. Kahlenberg, J.M., S. Yalavarthi, W. Zhao, J.B. Hodgin, T.J. Reed, N.M. Tsuji, and M.J. Kaplan. 2014. An essential role of caspase 1 in the induction of murine lupus and its associated vascular damage. Arthritis & Rhematology 66: 152–162.

    CAS  Google Scholar 

  77. Ranganathan, V., E. Gracey, M.A. Brown, R.D. Inman, and N. Haroon. 2017. Pathogenesis of ankylosing spondylitis - recent advances and future directions. Nature Reviews Rheumatology 13: 359–367.

    PubMed  CAS  Google Scholar 

  78. Bakland, G., J.T. Gran, and J.C. Nossent. 2011. Increased mortality in ankylosing spondylitis is related to disease activity. Annals of the Rheumatic Diseases 70: 1921–1925.

    PubMed  Google Scholar 

  79. Costello, M.E., F. Ciccia, D. Willner, N. Warrington, P.C. Robinson, B. Gardiner, M. Marshall, T.J. Kenna, G. Triolo, and M.A. Brown. 2015. Brief report: intestinal dysbiosis in ankylosing spondylitis. Arthritis & Rhematology 67: 686–691.

    Google Scholar 

  80. Man, S.M., R. Karki, and T.D. Kanneganti. 2017. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev 277: 61–75.

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Chen, G., M.H. Shaw, Y.G. Kim, and G. Nunez. 2009. NOD-like receptors: Role in innate immunity and inflammatory disease. Annu Rev Pathol 4: 365–398.

    PubMed  CAS  Google Scholar 

  82. Tsui, F.W., H.W. Tsui, A. Akram, N. Haroon, and R.D. Inman. 2014. The genetic basis of ankylosing spondylitis: new insights into disease pathogenesis. Appl Clin Genet 7: 105–115.

    PubMed  PubMed Central  CAS  Google Scholar 

  83. Chen, G.Y., and G. Nunez. 2010. Sterile inflammation: sensing and reacting to damage. Nature Reviews. Immunology 10: 826–837.

    PubMed  PubMed Central  CAS  Google Scholar 

  84. Takeuchi, O., and S. Akira. 2010. Pattern recognition receptors and inflammation. Cell. 140: 805–820.

    PubMed  CAS  Google Scholar 

  85. Lamkanfi, M., and V.M. Dixit. 2012. Inflammasomes and their roles in health and disease. Annual Review of Cell and Developmental Biology 28: 137–161.

    PubMed  CAS  Google Scholar 

  86. Strowig, T., J. Henao-Mejia, E. Elinav, and R. Flavell. 2012. Inflammasomes in health and disease. Nature 481: 278–286.

    PubMed  CAS  Google Scholar 

  87. Wen, H., E.A. Miao, and J.P. Ting. 2013. Mechanisms of NOD-like receptor-associated inflammasome activation. Immunity 39: 432–441.

    PubMed  CAS  Google Scholar 

  88. Vanaja, S.K., V.A. Rathinam, and K.A. Fitzgerald. 2015. Mechanisms of inflammasome activation: recent advances and novel insights. Trends in Cell Biology 25: 308–315.

    PubMed  PubMed Central  CAS  Google Scholar 

  89. Lamkanfi, M., and V.M. Dixit. 2014. Mechanisms and functions of inflammasomes. Cell 157: 1013–1022.

    PubMed  CAS  Google Scholar 

  90. Sutterwala, F.S., S. Haasken, and S.L. Cassel. 2014. Mechanism of NLRP3 inflammasome activation. Annals of the New York Academy of Sciences 1319: 82–95.

    PubMed  PubMed Central  CAS  Google Scholar 

  91. Martinon, F., K. Burns, and J. Tschopp. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular Cell 10: 417–426.

    PubMed  CAS  Google Scholar 

  92. Yang, X., H.Y. Chang, and D. Baltimore. 1998. Autoproteolytic activation of pro-caspases by oligomerization. Molecular Cell 1: 319–325.

    PubMed  CAS  Google Scholar 

  93. Howard, A.D., et al. 1991. IL-1-converting enzyme requires aspartic acid residues for processing of the IL-1 beta precursor at two distinct sites and does not cleave 31-kDa IL-1 alpha. Journal of Immunology 147: 2964–2969.

    CAS  Google Scholar 

  94. Gu, Y., et al. 1997. Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme. Science 275: 206–209.

    PubMed  CAS  Google Scholar 

  95. Ghayur, T., S. Banerjee, M. Hugunin, D. Butler, L. Herzog, A. Carter, L. Quintal, L. Sekut, R. Talanian, M. Paskind, W. Wong, R. Kamen, D. Tracey, and H. Alien. 1997. Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN-γ production. Nature 386: 619–623.

    PubMed  CAS  Google Scholar 

  96. Vance, R.E. 2015. The NAIP/NLRC4 inflammasomes. Current Opinion in Immunology 32: 84–89.

    PubMed  CAS  Google Scholar 

  97. Li, X., Y. Zhang, M. Xia, E. Gulbins, K.M. Boini, and P.L. Li. 2014. Activation of Nlrp3 inflammasomes enhances macrophage lipid-deposition and migration: implication of a novel role of inflammasome in atherogenesis. PLoS One 9: e87552.

    PubMed  PubMed Central  Google Scholar 

  98. Strowig, T., J. Henao-Mejia, E. Elinav, and R. Flavell. 2012. Inflammasomes in health and disease. Nature. 481: 278–286.

    PubMed  CAS  Google Scholar 

  99. Sahdo, B., K. Fransen, B. Asfaw Idosa, P. Eriksson, B. Soderquist, A. Kelly, et al. 2013. Cytokine profile in a cohort of healthy blood donors carrying polymorphisms in genes encoding the NLRP3 inflammasome. PLoS One 8: e75457.

    PubMed  PubMed Central  CAS  Google Scholar 

  100. Verma, D., E. Sarndahl, H. Andersson, P. Eriksson, M. Fredrikson, J.I. Jonsson, et al. 2012. The Q705K polymorphism in NLRP3 is a gain-of-function alteration leading to excessive interleukin-1β and IL-18 production. PLoS One 7: e34977.

    PubMed  PubMed Central  CAS  Google Scholar 

  101. Ito, S., Y. Hara, and T. Kubota. 2014. CARD8 is a negative regulator for NLRP3 inflammasome, but mutant NLRP3 in cryopyrin-associated periodic syndromes escapes the restriction. Arthritis Research & Therapy 16: R52.

    Google Scholar 

  102. Huang Y, Jiang H, Chen Y, et al., 2018. Tranilast directly targets NLRP3 to treat inflammasome-driven diseases. EMBO Mol Med.;10(4):pii: e8689.

  103. Darakhshan, S., and A.B. Pour. 2015. Tranilast: a review of its therapeutic applications. Pharmacological Research 91: 15–28.

    PubMed  CAS  Google Scholar 

  104. Inglis, J.J., G. Criado, M. Andrews, M. Feldmann, R.O. Williams, and M.L. Selley. 2007. The anti-allergic drug, N-(3′,4′-dimethoxycinnamonyl) anthranilic acid, exhibits potent anti-inflammatory and analgesic properties in arthritis. Rheumatology (Oxford, England) 46 (9): 1428–1432.

    CAS  Google Scholar 

  105. Shiota, N., P.T. Kovanen, K.K. Eklund, N. Shibata, K. Shimoura, T. Niibayashi, C. Shimbori, and H. Okunishi. 2010. The anti-allergic compound tranilast attenuates inflammation and inhibits bone destruction in collagen-induced arthritis in mice. British Journal of Pharmacology 159 (3): 626–635.

    PubMed  PubMed Central  CAS  Google Scholar 

  106. Nagate, T., T. Tamura, F. Sato, J. Kuroda, J. Nakayama, and N. Shibata. 2007. Tranilast suppresses the disease development of the adjuvant- and streptococcal cell wall-induced arthritis in rats. Journal of Pharmacological Sciences 105 (1): 48–56.

    PubMed  CAS  Google Scholar 

  107. Jiang, H., H. He, Y. Chen, W. Huang, J. Cheng, J. Ye, A. Wang, J. Tao, C. Wang, Q. Liu, T. Jin, W. Jiang, X. Deng, and R. Zhou. 2017. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. The Journal of Experimental Medicine 214 (11): 3219–3238.

    PubMed  PubMed Central  CAS  Google Scholar 

  108. Karki, P., C. Seong, J.-E. Kim, K. Hur, S.Y. Shin, J.S. Lee, B. Cho, and I.S. Park. 2007. Intracellular K(+) inhibits apoptosis by suppressing the Apaf-1 apoptosome formation and subsequent downstream pathways but not cytochrome c release. Cell Death and Differentiation 14 (12): 2068–2075.

    PubMed  CAS  Google Scholar 

  109. Kallberg, H., L. Padyukov, and R.M. Plenge. 2007. Gene-gene and gene-environment interactions involving HLA-DRB1, PTPN22, and smoking in two subsets of rheumatoid arthritis. American Journal of Human Genetics 80: 867–875.

    PubMed  PubMed Central  Google Scholar 

  110. Klareskog, L., P. Stolt, and K. Lundberg. 2006. A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis and Rheumatism 54: 38–46.

    PubMed  CAS  Google Scholar 

  111. Helmick, C. G., Felson, D. T., Lawrence, R. C., Gabriel, S., Hirsch, R., Kwoh, C. K. & Pillemer, S. R, 2008. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: part I. Arthritis and Rheumatism 58(1); 15–25.

  112. Lawrence, R.C., D.T. Felson, C.G. Helmick, L.M. Arnold, H. Choi, R.A. Deyo, and J.M. Jordan. 2010. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: part II. Arthritis and Rheumatism 58 (1): 26–35.

    Google Scholar 

  113. Strowig, T., J. Henao-Mejia, E. Elinav, and R. Flavell. 2012. Inflammasomes in health and disease. Nature. 481: 278–286.

    PubMed  CAS  Google Scholar 

  114. Wright, H.L., R.J. Moots, R.C. Bucknall, and S.W. Edwards. 2010. Neutrophil function in inflammationand inflammatory diseases. Rheumatology. 49: 1618–1631.

    PubMed  CAS  Google Scholar 

  115. Urbach, J.M., and F.M. Ausubel. 2017. The NBS-LRR architectures of plant R-proteins and metazoan NLRs evolved in independent events. Proceedings of the National Academy of Sciences of the United States of America 114 (5): 1063–1068.

    PubMed  PubMed Central  CAS  Google Scholar 

  116. Leipe, D.D., E.V. Koonin, and L. Aravind. 2004. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. Journal of Molecular Biology 343 (1): 1–28.

    PubMed  CAS  Google Scholar 

  117. Xu, J., E.A. Wold, Y. Ding, Q. Shen, and J. Zhou. 2018. Therapeutic potential of oridonin and its analogs: from anticancer and antiinflammation to neuroprotection. Molecules 23 (2): 474.

    PubMed Central  Google Scholar 

  118. He, H., H. Jiang, Y. Chen, J. Ye, A. Wang, C. Wang, Q. Liu, G. Liang, X. Deng, W. Jiang, and R. Zhou. 2018. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nature Communications 9 (1): 2550.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors carry equal contribution.

Corresponding author

Correspondence to Tapan Behl.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makkar, R., Behl, T., Bungau, S. et al. Understanding the Role of Inflammasomes in Rheumatoid Arthritis. Inflammation 43, 2033–2047 (2020). https://doi.org/10.1007/s10753-020-01301-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01301-1

Key Words

Navigation