Skip to main content

Advertisement

Log in

Gefitinib-Induced Cutaneous Toxicities in Brown Norway Rats Are Associated with Macrophage Infiltration

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Gefitinib (Iressa), is a selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), used in the targeted treatment of locally advanced or metastatic non-small cell lung cancer (NSCLC). Skin toxicity is the major adverse effect observed in patients treated with EGFR-targeted TKIs such as gefitinib and erlotinib. To date, a corresponding skin animal model has not been established to address the mechanisms of these effects. Therefore, we analyzed the skin rash phenotype and its pathological features in Brown Norway (BN) rats treated with gefitinib 2.5 mg, 5.0 mg, or 10 mg/100 g/day for 4 weeks. We found that treatment with gefitinib led to weight loss, rash, itching, and hair loss in a dose-dependent manner. We also investigated the skin pathology and found that the animal model showed thickening of the epidermis, loss of moisture, and apoptosis of keratinocytes. Immunohistochemistry, flow cytometry, and analysis of monocytes and leukocytes in the blood revealed increased macrophage infiltration was associated with the cutaneous toxicities induced by gefitinib in the BN rats. Finally, we found that gefitinib-induced cutaneous toxicity is significantly associated with three inflammatory cytokines known to be secreted by activated macrophages, TREM-1, CINC-2, and CINC-3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Melosky, B., H. Anderson, R.L. Burkes, Q. Chu, D. Hao, V. Ho, C. Ho, W. Lam, C.W. Lee, N.B. Leighl, N. Murray, S. Sun, R. Winston, and J.J. Laskin. 2016. Pan Canadian rash trial: a randomized phase III trial evaluating the impact of a prophylactic skin treatment regimen on epidermal growth factor receptor-tyrosine kinase inhibitor-induced skin toxicities in patients with metastatic lung cancer. Journal of Clinical Oncology 34 (8): 810–815.

    Article  PubMed  CAS  Google Scholar 

  2. Odogwu, L., L. Mathieu, K.B. Goldberg, G.M. Blumenthal, E. Larkins, M.H. Fiero, L. Rodriguez, K. Bijwaard, E.Y. Lee, R. Philip, I. Fan, M. Donoghue, P. Keegan, A. McKee, and R. Pazdur. 2018. FDA benefit-risk assessment of osimertinib for the treatment of metastatic non-small cell lung cancer harboring epidermal growth factor receptor T790M mutation. Oncologist 23 (3): 353–359.

    Article  PubMed  CAS  Google Scholar 

  3. Qian, J., X. Zhang, B. Zhang, P. Gu, L. Wang, and B. Han. 2018. Hepatotoxicity in advanced lung adenocarcinoma: a retrospective study of 2108 cases. Journal of Cancer 9 (9): 1607–1613.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Monjazeb, S., and J. Wilson. 2017. Epidermal growth factor receptor inhibitors: cutaneous side effects and their management. Skin Therapy Letter 22 (5): 5–7.

    PubMed  CAS  Google Scholar 

  5. Peus, D., L. Hamacher, and M.R. Pittelkow. 1997. EGF-receptor tyrosine kinase inhibition induces keratinocyte growth arrest and terminal differentiation. Journal of Investigative Dermatology 109 (6): 751–756.

    Article  PubMed  CAS  Google Scholar 

  6. Lacouture, M.E. 2006. Mechanisms of cutaneous toxicities to EGFR inhibitors. Nature Reviews Cancer 6 (10): 803–812.

    Article  PubMed  CAS  Google Scholar 

  7. Mascia, F., G. Lam, C. Keith, C. Garber, S.M. Steinberg, E. Kohn, and S.H. Yuspa. 2013. Genetic ablation of epidermal EGFR reveals the dynamic origin of adverse effects of anti-EGFR therapy. Science Translational Medicine 5 (199): 199ra110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Kari, C., T.O. Chan, M. Rocha de Quadros, and U. Rodeck. 2003. Targeting the epidermal growth factor receptor in cancer: apoptosis takes center stage. Cancer Research 63 (1): 1–5.

    PubMed  CAS  Google Scholar 

  9. Gupta, J., E. Grube, M.B. Ericksen, M.D. Stevenson, A.W. Lucky, A.P. Sheth, A.H. Assa’ad, and G.K. Khurana Hershey. 2008. Intrinsically defective skin barrier function in children with atopic dermatitis correlates with disease severity. Journal of Allergy and Clinical Immunology 121 (3): 725–730 e722.

    Article  PubMed  CAS  Google Scholar 

  10. Ward, N.L., N. Bhagathavula, A. Johnston, S.M. Dawes, W. Fu, S. Lambert, M.K. Dame, R.L. Warner, J.E. Gudjonsson, J. Varani, and J.T. Elder. 2015. Erlotinib-induced skin inflammation is IL-1 mediated in KC-Tie2 mice and human skin organ culture. Journal of Investigative Dermatology 135 (3): 910–913.

    Article  PubMed  CAS  Google Scholar 

  11. Wynn, T.A., A. Chawla, and J.W. Pollard. 2013. Macrophage biology in development, homeostasis and disease. Nature 496 (7446): 445–455.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Jakubzick, C., E.L. Gautier, S.L. Gibbings, D.K. Sojka, A. Schlitzer, T.E. Johnson, S. Ivanov, Q. Duan, S. Bala, T. Condon, N. van Rooijen, J.R. Grainger, Y. Belkaid, A. Ma’ayan, D.W.H. Riches, W.M. Yokoyama, F. Ginhoux, P.M. Henson, and G.J. Randolph. 2013. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 39 (3): 599–610.

    Article  PubMed  CAS  Google Scholar 

  13. Shi, C., and E.G. Pamer. 2011. Monocyte recruitment during infection and inflammation. Nature Reviews Immunology 11 (11): 762–774.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Du, Y., T. Wu, X.J. Zhou, L.S. Davis, and C. Mohan. 2016. Blockade of CD354 (TREM-1) ameliorates anti-GBM-induced nephritis. Inflammation 39 (3): 1169–1176.

    Article  PubMed  CAS  Google Scholar 

  15. Kimura, H., K. Kasahara, M. Sekijima, T. Tamura, and K. Nishio. 2005. Plasma MIP-1beta levels and skin toxicity in Japanese non-small cell lung cancer patients treated with the EGFR-targeted tyrosine kinase inhibitor, gefitinib. Lung Cancer 50 (3): 393–399.

    Article  PubMed  Google Scholar 

  16. Campanati, A., R. Berardi, A. Onofri, C. Pierantoni, I. Conte, K. Giuliodori, E. Molinelli, F. Marcucci, S. Cascinu, and A. Offidani. 2012. A novel approach to manage skin toxicity caused by therapeutic agents targeting epidermal growth factor receptor. Ann Oncol 23 (4): 1081–1082.

    Article  PubMed  CAS  Google Scholar 

  17. Badavanis, G., E. Pasmatzi, A. Monastirli, and D. Tsambaos. 2017. Safety of systemic biologic agents in the treatment of non-malignant skin disorders. Current Drug Safety 12 (2): 76–94.

    Article  CAS  Google Scholar 

  18. Murray, P.J., and T.A. Wynn. 2011. Protective and pathogenic functions of macrophage subsets. Nature Reviews Immunology 11 (11): 723–737.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Medzhitov, R. 2008. Origin and physiological roles of inflammation. Nature 454 (7203): 428–435.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang, Z., C. Xiao, A.M. Gibson, S.A. Bass, and G.K. Khurana Hershey. 2014. EGFR signaling blunts allergen-induced IL-6 production and Th17 responses in the skin and attenuates development and relapse of atopic dermatitis. The Journal of Immunology 192 (3): 859–866.

    Article  PubMed  CAS  Google Scholar 

  21. Nakai, K., Y.Y. He, F. Nishiyama, F. Naruse, R. Haba, Y. Kushida, N. Katsuki, T. Moriue, K. Yoneda, and Y. Kubota. 2017. IL-17A induces heterogeneous macrophages, and it does not alter the effects of lipopolysaccharides on macrophage activation in the skin of mice. Scientific Reports 7 (1): 12473.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Surguladze, D., D. Deevi, N. Claros, E. Corcoran, S. Wang, M.J. Plym, Y. Wu, J. Doody, D.J. Mauro, L. Witte, K.J. Busam, B. Pytowski, U. Rodeck, and J.R. Tonra. 2009. Tumor necrosis factor-alpha and interleukin-1 antagonists alleviate inflammatory skin changes associated with epidermal growth factor receptor antibody therapy in mice. Cancer Research 69 (14): 5643–5647.

    Article  PubMed  CAS  Google Scholar 

  23. Ferrante, C.J., and S.J. Leibovich. 2012. Regulation of macrophage polarization and wound healing. Advances in Wound Care 1 (1): 10–16.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fantuzzi, F., M. Del Giglio, P. Gisondi, and G. Girolomoni. 2008. Targeting tumor necrosis factor alpha in psoriasis and psoriatic arthritis. Expert Opinion on Therapeutic Targets 12 (9): 1085–1096.

    Article  PubMed  CAS  Google Scholar 

  25. Gudjonsson, J.E., A. Johnston, H. Sigmundsdottir, and H. Valdimarsson. 2004. Immunopathogenic mechanisms in psoriasis. Clinical and Experimental Immunology 135 (1): 1–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Elloso, M.M., M. Gomez-Angelats, and A.M. Fourie. 2012. Targeting the Th17 pathway in psoriasis. Journal of Leukocyte Biology 92 (6): 1187–1197.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by the Tibetan foundation projects (Project No. 2017XTCX012), National Natural Science Foundation projects (Project No. 81973667), New Teacher Initial Funding (Project No. 2018-JYBZZ-XJSJJ011), and National Center International Research (Project No. 2015B01022).

Author information

Authors and Affiliations

Authors

Contributions

Liangqin Wan contributed to study design and initial manuscript and was responsible for the whole experiments. Yalei Wang, Fang He, Yali Zhang, Ke Yang, Ziwei Chen, Chenchen Song, Ruoxi Gu, and Ce Zhang contributed to data organization and analysis. All authors were partially carried out the experiment and analyzed the data. Yan Tan helped correct the manuscript. Yibo Tang, Miao Jiang, Xu Wang, Peng Wei, Yan Tan, and Qian Hua conceptualized and designed the study. Tonghua Liu revised the manuscript.

Corresponding authors

Correspondence to Miao Jiang or Qian Hua.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, L., Wang, Y., Tang, Y. et al. Gefitinib-Induced Cutaneous Toxicities in Brown Norway Rats Are Associated with Macrophage Infiltration. Inflammation 43, 2137–2146 (2020). https://doi.org/10.1007/s10753-020-01281-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01281-2

Key Words

Navigation