Skip to main content
Log in

Sepsis-Induced Myocardial Dysfunction (SIMD): the Pathophysiological Mechanisms and Therapeutic Strategies Targeting Mitochondria

  • Review
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Sepsis is a lethal syndrome with multiple organ failure caused by an inappropriate host response to infection. Cardiac dysfunction is one of the important complications of sepsis, termed sepsis-induced myocardial dysfunction (SIMD), which is characterized by systolic and diastolic dysfunction of both sides of the heart. Mechanisms that contribute to SIMD include an excessive inflammatory response, altered circulatory, microvascular status, nitric oxide (NO) synthesis impairment, endothelial dysfunction, disorders of calcium regulation, cardiac autophagy anomaly, autonomic nervous system dysregulation, metabolic reprogramming, and mitochondrial dysfunction. The role of mitochondrial dysfunction, which is characterized by structural abnormalities, increased oxidative stress, abnormal opening of the mitochondrial permeability transition pore (mPTP), mitochondrial uncoupling, and disordered quality control systems, has been gaining increasing attention as a central player in the pathophysiology of SIMD. The disruption of homeostasis within the organism induced by mitochondrial dysfunction may also be an important aspect of SIMD development. In addition, an emerging therapy strategy targeting mitochondria, namely, metabolic resuscitation, seems promising. The current review briefly introduces the mechanism of SIMD, highlights how mitochondrial dysfunction contributes to SIMD, and discusses the role of metabolic resuscitation in the treatment of SIMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

PAMPs:

pathogen-associated molecular patterns

DAMPs:

damage-associated molecular patterns

O2 :

dioxygen

Ca2+ :

calcium bivalent

TLR:

toll-like receptor

ATP:

adenosine triphosphate

ROS:

reactive oxygen species

RNS:

reactive nitrogen species

LPS:

lipopolysaccharide

CLP:

cecal ligation and puncture

mtDNA:

mitochondrial DNA

mtTFA/TFAM:

mitochondrial transcription factor A

mPTP:

mitochondrial permeability transition pore

AMP:

adenosine monophosphate

MAMs:

mitochondrial-associated membranes

AMPK:

AMP-activated protein kinase

IL:

interleukin

HMGB1:

high mobility group protein B1

PGC1α:

peroxisome proliferator-activated receptor gamma coactivator-1 α

PGC1β:

peroxisome proliferator-activated receptor gamma coactivator-1 β

ICU:

intensive care unit

RCT:

randomized controlled trial

TNFα:

tumor necrosis factor

SOFA:

sequential organ failure assessment

CO:

carbon monoxide

NO:

nitric oxide

H2S:

hydrogen sulfide

References

  1. Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The third international consensus definitions for sepsis and septic shock (Sepsis-3). Jama 315 (8): 801–810.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Reinhart, K., R. Daniels, N. Kissoon, F.R. Machado, R.D. Schachter, and S. Finfer. 2017. Recognizing sepsis as a global health priority - a WHO resolution. The New England Journal of Medicine 377 (5): 414–417.

    PubMed  Google Scholar 

  3. Court, O., A. Kumar, J.E. Parrillo, and A. Kumar. 2002. Clinical review: myocardial depression in sepsis and septic shock. Critical care (London, England)6 (6): 500–508.

    Google Scholar 

  4. Liu, Y.C., M.M. Yu, S.T. Shou, and Y.F. Chai. 2017. Sepsis-induced cardiomyopathy: mechanisms and treatments. Frontiers in Immunology 8: 1021.

    PubMed  PubMed Central  Google Scholar 

  5. Beesley, S.J., G. Weber, T. Sarge, S. Nikravan, C.K. Grissom, M.J. Lanspa, S. Shahul, and S.M. Brown. 2018. Septic cardiomyopathy. Critical Care Medicine 46 (4): 625–634.

    PubMed  Google Scholar 

  6. Martin, L., M. Derwall, S. Al Zoubi, E. Zechendorf, D.A. Reuter, C. Thiemermann, and T. Schuerholz. 2019. The septic heart: current understanding of molecular mechanisms and clinical implications. Chest 155 (2): 427–437.

    PubMed  Google Scholar 

  7. Fenton, K.E., and M.M. Parker. 2016. Cardiac function and dysfunction in sepsis. Clinics in Chest Medicine 37 (2): 289–298.

    PubMed  Google Scholar 

  8. Singer, M. 2014. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence 5 (1): 66–72.

    PubMed  Google Scholar 

  9. Takasu, O., J.P. Gaut, E. Watanabe, To K, R.E. Fagley, B. Sato, S. Jarman, I.R. Efimov, D.L. Janks, A. Srivastava, et al. 2013. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. American Journal of Respiratory and Critical Care Medicine 187 (5): 509–517.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Vanasco, V., T. Saez, N.D. Magnani, L. Pereyra, T. Marchini, A. Corach, M.I. Vaccaro, D. Corach, P. Evelson, and S. Alvarez. 2014. Cardiac mitochondrial biogenesis in endotoxemia is not accompanied by mitochondrial function recovery. Free Radical Biology & Medicine 77: 1–9.

    CAS  Google Scholar 

  11. Supinski, G.S., and L.A. Callahan. 2006. Polyethylene glycol-superoxide dismutase prevents endotoxin-induced cardiac dysfunction. American Journal of Respiratory and Critical Care Medicine 173 (11): 1240–1247.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lowes, D.A., B.M. Thottakam, N.R. Webster, M.P. Murphy, and H.F. Galley. 2008. The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide-peptidoglycan model of sepsis. Free Radical Biology & Medicine 45 (11): 1559–1565.

    CAS  Google Scholar 

  13. Zang, Q.S., H. Sadek, D.L. Maass, B. Martinez, L. Ma, J.A. Kilgore, N.S. Williams, D.E. Frantz, J.G. Wigginton, F.E. Nwariaku, S.E. Wolf, and J.P. Minei. 2012. Specific inhibition of mitochondrial oxidative stress suppresses inflammation and improves cardiac function in a rat pneumonia-related sepsis model. American Journal of Physiology Heart and Circulatory Physiology 302 (9): H1847–H1859.

    CAS  PubMed  Google Scholar 

  14. Vanasco, V., M.C. Cimolai, P. Evelson, and S. Alvarez. 2008. The oxidative stress and the mitochondrial dysfunction caused by endotoxemia are prevented by alpha-lipoic acid. Free Radical Research 42 (9): 815–823.

    CAS  PubMed  Google Scholar 

  15. Suliman, H.B., K.E. Welty-Wolf, M. Carraway, L. Tatro, and C.A. Piantadosi. 2004. Lipopolysaccharide induces oxidative cardiac mitochondrial damage and biogenesis. Cardiovascular Research 64 (2): 279–288.

    CAS  PubMed  Google Scholar 

  16. Joshi, M.S., M.W. Julian, J.E. Huff, J.A. Bauer, Y. Xia, and E.D. Crouser. 2006. Calcineurin regulates myocardial function during acute endotoxemia. American Journal of Respiratory and Critical Care Medicine 173 (9): 999–1007.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Larche, J., S. Lancel, S.M. Hassoun, R. Favory, B. Decoster, P. Marchetti, C. Chopin, and R. Neviere. 2006. Inhibition of mitochondrial permeability transition prevents sepsis-induced myocardial dysfunction and mortality. Journal of the American College of Cardiology 48 (2): 377–385.

    CAS  PubMed  Google Scholar 

  18. Pan, P., H. Zhang, L. Su, X. Wang, and D. Liu. 2018. Melatonin balance the autophagy and apoptosis by regulating UCP2 in the LPS-induced cardiomyopathy. Molecules (Basel, Switzerland) 23 (3).

  19. Xu, C., C. Yi, H. Wang, I.C. Bruce, and Q. Xia. 2012. Mitochondrial nitric oxide synthase participates in septic shock myocardial depression by nitric oxide overproduction and mitochondrial permeability transition pore opening. Shock (Augusta, Ga) 37 (1): 110–115.

    CAS  Google Scholar 

  20. Petronilli, V., D. Penzo, L. Scorrano, P. Bernardi, and F. Di Lisa. 2001. The mitochondrial permeability transition, release of cytochrome c and cell death. Correlation with the duration of pore openings in situ. The Journal of Biological Chemistry 276 (15): 12030–12034.

    CAS  PubMed  Google Scholar 

  21. Wang, X., D. Liu, W. Chai, Y. Long, L. Su, and R. Yang. 2015. The role of uncoupling protein 2 during myocardial dysfunction in a canine model of endotoxin shock. Shock (Augusta, Ga) 43 (3): 292–297.

    CAS  Google Scholar 

  22. Zheng, G., J. Lyu, S. Liu, J. Huang, C. Liu, D. Xiang, M. Xie, and Q. Zeng. 2015. Silencing of uncoupling protein 2 by small interfering RNA aggravates mitochondrial dysfunction in cardiomyocytes under septic conditions. International Journal of Molecular Medicine 35 (6): 1525–1536.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sánchez-Villamil, J.P., V. D'Annunzio, P. Finocchietto, S. Holod, I. Rebagliati, H. Pérez, J.G. Peralta, R.J. Gelpi, J.J. Poderoso, and M.C. Carreras. 2016. Cardiac-specific overexpression of thioredoxin 1 attenuates mitochondrial and myocardial dysfunction in septic mice. The international journal of biochemistry & cell biology 81 (Pt B): 323–334.

    Google Scholar 

  24. Gonzalez, A.S., M.E. Elguero, P. Finocchietto, S. Holod, L. Romorini, S.G. Miriuka, J.G. Peralta, J.J. Poderoso, and M.C. Carreras. 2014. Abnormal mitochondrial fusion-fission balance contributes to the progression of experimental sepsis. Free Radical Research 48 (7): 769–783.

    CAS  PubMed  Google Scholar 

  25. Preau, S., F. Delguste, Y. Yu, I. Remy-Jouet, V. Richard, F. Saulnier, E. Boulanger, and R. Neviere. 2016. Endotoxemia engages the RhoA kinase pathway to impair cardiac function by altering cytoskeleton, mitochondrial fission, and autophagy. Antioxidants & Redox Signaling 24 (10): 529–542.

    CAS  Google Scholar 

  26. Hickson-Bick, D.L., C. Jones, and L.M. Buja. 2008. Stimulation of mitochondrial biogenesis and autophagy by lipopolysaccharide in the neonatal rat cardiomyocyte protects against programmed cell death. Journal of Molecular and Cellular Cardiology 44 (2): 411–418.

    CAS  PubMed  Google Scholar 

  27. Piquereau, J., R. Godin, S. Deschênes, V.L. Bessi, M. Mofarrahi, S.N. Hussain, and Y. Burelle. 2013. Protective role of PARK2/Parkin in sepsis-induced cardiac contractile and mitochondrial dysfunction. Autophagy 9 (11): 1837–1851.

    CAS  PubMed  Google Scholar 

  28. Kim, M.J., S.H. Bae, J.C. Ryu, Y. Kwon, J.H. Oh, J. Kwon, J.S. Moon, K. Kim, A. Miyawaki, M.G. Lee, et al. 2016. SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy 12 (8): 1272–1291.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Carré, J.E., J.C. Orban, L. Re, K. Felsmann, W. Iffert, M. Bauer, H.B. Suliman, C.A. Piantadosi, T.M. Mayhew, P. Breen, M. Stotz, and M. Singer. 2010. Survival in critical illness is associated with early activation of mitochondrial biogenesis. American Journal of Respiratory and Critical Care Medicine 182 (6): 745–751.

    PubMed  PubMed Central  Google Scholar 

  30. Russell, L.K., C.M. Mansfield, J.J. Lehman, A. Kovacs, M. Courtois, J.E. Saffitz, D.M. Medeiros, M.L. Valencik, J.A. McDonald, and D.P. Kelly. 2004. Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circulation Research 94 (4): 525–533.

    CAS  PubMed  Google Scholar 

  31. Drosatos, K., R.S. Khan, C.M. Trent, H. Jiang, N.H. Son, W.S. Blaner, S. Homma, P.C. Schulze, and I.J. Goldberg. 2013. Peroxisome proliferator-activated receptor-γ activation prevents sepsis-related cardiac dysfunction and mortality in mice. Circulation Heart failure 6 (3): 550–562.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Schilling, J., L. Lai, N. Sambandam, C.E. Dey, T.C. Leone, and D.P. Kelly. 2011. Toll-like receptor-mediated inflammatory signaling reprograms cardiac energy metabolism by repressing peroxisome proliferator-activated receptor γ coactivator-1 signaling. Circulation Heart failure 4 (4): 474–482.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Solomon, M.A., R. Correa, H.R. Alexander, L.A. Koev, J.P. Cobb, D.K. Kim, W.C. Roberts, Z.M. Quezado, T.D. Scholz, and R.E. Cunnion. 1994. Myocardial energy metabolism and morphology in a canine model of sepsis. The American Journal of Physiology 266 (2 Pt 2): H757–H768.

    CAS  PubMed  Google Scholar 

  34. Zang, Q., D.L. Maass, S.J. Tsai, and J.W. Horton. 2007. Cardiac mitochondrial damage and inflammation responses in sepsis. Surgical Infections 8 (1): 41–54.

    PubMed  PubMed Central  Google Scholar 

  35. Neri, M., I. Riezzo, C. Pomara, S. Schiavone, and E. Turillazzi. 2016. Oxidative-nitrosative stress and myocardial dysfunctions in sepsis: evidence from the literature and postmortem observations. Mediators of Inflammation 2016: 3423450.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bolaños, J.P., S.J. Heales, S. Peuchen, J.E. Barker, J.M. Land, and J.B. Clark. 1996. Nitric oxide-mediated mitochondrial damage: a potential neuroprotective role for glutathione. Free Radical Biology & Medicine 21 (7): 995–1001.

    Google Scholar 

  37. Supinski, G.S., M.P. Murphy, and L.A. Callahan. 2009. MitoQ administration prevents endotoxin-induced cardiac dysfunction. American journal of physiology Regulatory, integrative and comparative physiology 297 (4): R1095–R1102.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Halestrap, A.P., G.P. McStay, and S.J. Clarke. The permeability transition pore complex: another view. Biochimie84 (2–3): 153–166.

  39. Halestrap, A.P. 2009. What is the mitochondrial permeability transition pore? Journal of Molecular and Cellular Cardiology 46 (6): 821–831.

    CAS  PubMed  Google Scholar 

  40. Hüser, J., and L.A. Blatter. 1999. Fluctuations in mitochondrial membrane potential caused by repetitive gating of the permeability transition pore. The Biochemical Journal 343 (Pt 2): 311–317.

    PubMed  PubMed Central  Google Scholar 

  41. Petronilli, V., G. Miotto, M. Canton, M. Brini, R. Colonna, P. Bernardi, and F. Di Lisa. 1999. Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophysical Journal 76 (2): 725–734.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Divakaruni, A.S., and M.D. Brand. 2011. The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda, Md) 26 (3): 192–205.

    CAS  Google Scholar 

  43. Ruiz-Ramírez, A., O. López-Acosta, M.A. Barrios-Maya, and M. El-Hafidi. 2016. Cell death and heart failure in obesity: role of uncoupling proteins. Oxidative Medicine and Cellular Longevity 2016: 9340654.

    PubMed  PubMed Central  Google Scholar 

  44. Youle, R.J., and A.M. van der Bliek. 2012. Mitochondrial fission, fusion, and stress. Science (New York, NY) 337 (6098): 1062–1065.

    CAS  Google Scholar 

  45. Kubli, D.A., and Å.B. Gustafsson. 2012. Mitochondria and mitophagy: the yin and yang of cell death control. Circulation Research 111 (9): 1208–1221.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dorn, G.W., and R.N. Kitsis. 2015. The mitochondrial dynamism-mitophagy-cell death interactome: multiple roles performed by members of a mitochondrial molecular ensemble. Circulation Research 116 (1): 167–182.

    CAS  PubMed  Google Scholar 

  47. Kelly, D.P., and R.C. Scarpulla. 2004. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes & Development 18 (4): 357–368.

    CAS  Google Scholar 

  48. Wenz, T. 2013. Regulation of mitochondrial biogenesis and PGC-1α under cellular stress. Mitochondrion 13 (2): 134–142.

    CAS  PubMed  Google Scholar 

  49. Yao, X., D. Carlson, Y. Sun, L. Ma, S.E. Wolf, J.P. Minei, and Q.S. Zang. 2015. Mitochondrial ROS induces cardiac inflammation via a pathway through mtDNA damage in a pneumonia-related sepsis model. PLoS One 10 (10): e0139416.

    PubMed  PubMed Central  Google Scholar 

  50. Chouchani, E.T., L. Kazak, and B.M. Spiegelman. 2017. Mitochondrial reactive oxygen species and adipose tissue thermogenesis: Bridging physiology and mechanisms. The Journal of Biological Chemistry 292 (41): 16810–16816.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ortega, S.P., E.T. Chouchani, and S. Boudina. 2017. Stress turns on the heat: regulation of mitochondrial biogenesis and UCP1 by ROS in adipocytes. Adipocyte 6 (1): 56–61.

    CAS  PubMed  Google Scholar 

  52. Yu, X.X., J.L. Barger, B.B. Boyer, M.D. Brand, G. Pan, and S.H. Adams. 2000. Impact of endotoxin on UCP homolog mRNA abundance, thermoregulation, and mitochondrial proton leak kinetics. American Journal of Physiology Endocrinology and Metabolism 279 (2): E433–E446.

    CAS  PubMed  Google Scholar 

  53. Chen, H.W., C. Hsu, T.S. Lu, S.J. Wang, and R.C. Yang. 2003. Heat shock pretreatment prevents cardiac mitochondrial dysfunction during sepsis. Shock (Augusta, Ga) 20 (3): 274–279.

    Google Scholar 

  54. Miller, W.L. 2013. Steroid hormone synthesis in mitochondria. Molecular and Cellular Endocrinology 379 (1–2): 62–73.

    CAS  PubMed  Google Scholar 

  55. Maechler, P. 2013. Mitochondrial function and insulin secretion. Molecular and Cellular Endocrinology 379 (1–2): 12–18.

    CAS  PubMed  Google Scholar 

  56. Chow, J., J. Rahman, J.C. Achermann, M.T. Dattani, and S. Rahman. 2017. Mitochondrial disease and endocrine dysfunction. Nature Reviews Endocrinology 13 (2): 92–104.

    CAS  PubMed  Google Scholar 

  57. Sharma, A.C., H.B. Bosmann, S.J. Motew, K.H. Hales, D.B. Hales, and J.L. Ferguson. 1996. Steroid hormone alterations following induction of chronic intraperitoneal sepsis in male rats. Shock (Augusta, Ga) 6 (2): 150–154.

    CAS  Google Scholar 

  58. Fourrier, F., A. Jallot, L. Leclerc, M. Jourdain, A. Racadot, J.L. Chagnon, A. Rime, and C. Chopin. 1994. Sex steroid hormones in circulatory shock, sepsis syndrome, and septic shock. Circulatory Shock 43 (4): 171–178.

    CAS  PubMed  Google Scholar 

  59. Borkowski, J., A. Siemiatkowski, M. Jedynak, S.L. Czaban, and S. Wołczyński. 2003. Serum levels of luteinizing hormone, testosterone and prolactin in patients with septic shock. Przeglad lekarski 60 (11): 706–709.

    PubMed  Google Scholar 

  60. Marx, C., S. Petros, S.R. Bornstein, M. Weise, M. Wendt, M. Menschikowski, L. Engelmann, and G. Höffken. 2003. Adrenocortical hormones in survivors and nonsurvivors of severe sepsis: diverse time course of dehydroepiandrosterone, dehydroepiandrosterone-sulfate, and cortisol. Critical Care Medicine 31 (5): 1382–1388.

    CAS  PubMed  Google Scholar 

  61. Zhang, Q., G. Dong, X. Zhao, M. Wang, and C.S. Li. 2014. Prognostic significance of hypothalamic-pituitary-adrenal axis hormones in early sepsis: a study performed in the emergency department. Intensive Care Medicine 40 (10): 1499–1508.

    CAS  PubMed  Google Scholar 

  62. Giorgi, C., S. Marchi, and P. Pinton. 2018. The machineries, regulation and cellular functions of mitochondrial calcium. Nature Reviews Molecular Cell Biology 19 (11): 713–730.

    CAS  PubMed  Google Scholar 

  63. Bravo-Sagua, R., V. Parra, C. López-Crisosto, P. Díaz, A.F. Quest, and S. Lavandero. 2017. Calcium transport and signaling in mitochondria. Comprehensive Physiology 7 (2): 623–634.

    PubMed  Google Scholar 

  64. Berridge, M.J., P. Lipp, and M.D. Bootman. 2000. The versatility and universality of calcium signalling. Nature Reviews Molecular Cell Biology 1 (1): 11–21.

    CAS  PubMed  Google Scholar 

  65. Hassoun, S.M., X. Marechal, D. Montaigne, Y. Bouazza, B. Decoster, S. Lancel, and R. Neviere. 2008. Prevention of endotoxin-induced sarcoplasmic reticulum calcium leak improves mitochondrial and myocardial dysfunction. Critical Care Medicine 36 (9): 2590–2596.

    CAS  PubMed  Google Scholar 

  66. Joseph, L.C., D. Kokkinaki, M.C. Valenti, G.J. Kim, E. Barca, D. Tomar, N.E. Hoffman, P. Subramanyam, H.M. Colecraft, M. Hirano, et al. 2017. Inhibition of NADPH oxidase 2 (NOX2) prevents sepsis-induced cardiomyopathy by improving calcium handling and mitochondrial function. JCI insight 2 (17).

  67. Pinto, B.B., A. Dyson, M. Umbrello, J.E. Carré, C. Ritter, I. Clatworthy, M.R. Duchen, and M. Singer. 2017. Improved survival in a long-term rat model of sepsis is associated with reduced mitochondrial calcium uptake despite increased energetic demand. Critical Care Medicine 45 (8): e840–e848.

    CAS  PubMed  Google Scholar 

  68. Chandel, N.S. 2014. Mitochondria as signaling organelles. BMC Biology 12: 34.

    PubMed  PubMed Central  Google Scholar 

  69. Chandel, N.S. 2015. Evolution of mitochondria as signaling organelles. Cell Metabolism 22 (2): 204–206.

    CAS  PubMed  Google Scholar 

  70. Chan, S.H., K.L. Wu, L.L. Wang, and J.Y. Chan. 2005. Nitric oxide- and superoxide-dependent mitochondrial signaling in endotoxin-induced apoptosis in the rostral ventrolateral medulla of rats. Free Radical Biology & Medicine 39 (5): 603–618.

    CAS  Google Scholar 

  71. Emre, Y., C. Hurtaud, T. Nübel, F. Criscuolo, D. Ricquier, and A.M. Cassard-Doulcier. 2007. Mitochondria contribute to LPS-induced MAPK activation via uncoupling protein UCP2 in macrophages. The Biochemical Journal 402 (2): 271–278.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Neviere, R., F. Delguste, A. Durand, J. Inamo, E. Boulanger, and S. Preau. 2016. Abnormal mitochondrial cAMP/PKA signaling is involved in sepsis-induced mitochondrial and myocardial dysfunction. International Journal of Molecular Sciences17 (12).

  73. Zang, Q.S., B. Martinez, X. Yao, D.L. Maass, L. Ma, S.E. Wolf, and J.P. Minei. 2012. Sepsis-induced cardiac mitochondrial dysfunction involves altered mitochondrial-localization of tyrosine kinase Src and tyrosine phosphatase SHP2. PLoS One 7 (8): e43424.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Quirós, P.M., A. Mottis, and J. Auwerx. 2016. Mitonuclear communication in homeostasis and stress. Nature Reviews Molecular Cell Biology 17 (4): 213–226.

    PubMed  Google Scholar 

  75. Haynes, C.M., C.J. Fiorese, and Y.F. Lin. 2013. Evaluating and responding to mitochondrial dysfunction: the mitochondrial unfolded-protein response and beyond. Trends in Cell Biology 23 (7): 311–318.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Huang, L.J., H.P. Dong, I.C. Chuang, M.S. Liu, and R.C. Yang. 2012. Attenuation of mitochondrial unfolded protein response is associated with hepatic dysfunction in septic rats. Shock (Augusta, Ga), 38 (6): 642–648.

  77. West, A.P., W. Khoury-Hanold, M. Staron, M.C. Tal, C.M. Pineda, S.M. Lang, M. Bestwick, B.A. Duguay, N. Raimundo, D.A. MacDuff, et al. 2015. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520 (7548): 553–557.

    PubMed  PubMed Central  Google Scholar 

  78. Breda, C.N.S., G.G. Davanzo, P.J. Basso, N.O. Saraiva Câmara, and P.M.M. Moraes-Vieira. 2019. Mitochondria as central hub of the immune system. Redox Biology 26: 101255.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Vakifahmetoglu-Norberg, H., A.T. Ouchida, and E. Norberg. 2017. The role of mitochondria in metabolism and cell death. Biochemical and Biophysical Research Communications 482 (3): 426–431.

    CAS  PubMed  Google Scholar 

  80. Gurung, P., J.R. Lukens, and T.D. Kanneganti. 2015. Mitochondria: diversity in the regulation of the NLRP3 inflammasome. Trends in Molecular Medicine 21 (3): 193–201.

    CAS  PubMed  Google Scholar 

  81. Xu, X., Q. Liu, S. He, J. Zhao, N. Wang, X. Han, and Y. Guo. 2018. Qiang-Xin 1 formula prevents Sepsis-induced apoptosis in murine cardiomyocytes by suppressing endoplasmic reticulum- and mitochondria-associated pathways. Frontiers in Pharmacology 9: 818.

    PubMed  PubMed Central  Google Scholar 

  82. Hotchkiss, R.S., S.B. Osmon, K.C. Chang, T.H. Wagner, C.M. Coopersmith, and I.E. Karl. 2005. Accelerated lymphocyte death in sepsis occurs by both the death receptor and mitochondrial pathways. Journal of immunology (Baltimore, Md : 1950) 174 (8): 5110–5118.

    CAS  Google Scholar 

  83. Wang, P., Y. Hu, D. Yao, and Y. Li. 2018. Omi/HtrA2 regulates a mitochondria-dependent apoptotic pathway in a murine model of septic encephalopathy. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 49 (6): 2163–2173.

    CAS  Google Scholar 

  84. Chen, G., X. Li, M. Huang, X. Zhou, Y. Li, X. Mao, and J. Bai. 2017. The role of thioredoxin-1 in suppression sepsis through inhibiting mitochondrial-induced apoptosis in spleen. Shock (Augusta, Ga) 47 (6): 753–758.

    CAS  Google Scholar 

  85. Leite, H.P., and L.F. de Lima. 2016. Metabolic resuscitation in sepsis: a necessary step beyond the hemodynamic? Journal of Thoracic Disease 8 (7): E552–E557.

    PubMed  PubMed Central  Google Scholar 

  86. Ding, W., Y. Shen, Q. Li, S. Jiang, and H. Shen. 2018. Therapeutic mild hypothermia improves early outcomes in rats subjected to severe sepsis. Life Sciences 199: 1–9.

    CAS  PubMed  Google Scholar 

  87. Léon, K., K. Pichavant-Rafini, H. Ollivier, V. Monbet, and E. L'Her. 2015. Does induction time of mild hypothermia influence the survival duration of septic rats? Therapeutic Hypothermia and Temperature Management 5 (2): 85–88.

    PubMed  Google Scholar 

  88. Schwarzl, M., S. Seiler, M. Wallner, D. von Lewinski, S. Huber, H. Maechler, P. Steendijk, S. Zelzer, M. Truschnig-Wilders, B. Obermayer-Pietsch, A. Lueger, B.M. Pieske, and H. Post. 2013. Mild hypothermia attenuates circulatory and pulmonary dysfunction during experimental endotoxemia. Critical Care Medicine 41 (12): e401–e410.

    CAS  PubMed  Google Scholar 

  89. Itenov, T.S., M.E. Johansen, M. Bestle, K. Thormar, L. Hein, L. Gyldensted, A. Lindhardt, H. Christensen, S. Estrup, H.P. Pedersen, et al. 2018. Induced hypothermia in patients with septic shock and respiratory failure (CASS): A randomised, controlled, open-label trial. The Lancet Respiratory Medicine 6 (3): 183–192.

    PubMed  Google Scholar 

  90. Zhang, Z., L. Chen, and H. Ni. 2015. Antipyretic therapy in critically ill patients with sepsis: an interaction with body temperature. PLoS One 10 (3): e0121919.

    PubMed  PubMed Central  Google Scholar 

  91. López-Lluch, G., and P. Navas. 2016. Calorie restriction as an intervention in ageing. The Journal of Physiology 594 (8): 2043–2060.

    PubMed  PubMed Central  Google Scholar 

  92. Starr, M.E., A.M. Steele, D.A. Cohen, and H. Saito. 2016. Short-term dietary restriction rescues mice from lethal abdominal sepsis and endotoxemia and reduces the inflammatory/coagulant potential of adipose tissue. Critical Care Medicine 44 (7): e509–e519.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hasegawa, A., H. Iwasaka, S. Hagiwara, N. Asai, T. Nishida, and T. Noguchi. 2012. Alternate day calorie restriction improves systemic inflammation in a mouse model of sepsis induced by cecal ligation and puncture. The Journal of Surgical Research 174 (1): 136–141.

    CAS  PubMed  Google Scholar 

  94. Arabi, Y.M., A.S. Aldawood, S.H. Haddad, H.M. Al-Dorzi, H.M. Tamim, G. Jones, S. Mehta, L. McIntyre, O. Solaiman, M.H. Sakkijha, et al. 2015. Permissive underfeeding or standard enteral feeding in critically ill adults. The New England Journal of Medicine 372 (25): 2398–2408.

    CAS  PubMed  Google Scholar 

  95. Donnino, M.W., L.W. Andersen, M. Chase, K.M. Berg, M. Tidswell, T. Giberson, R. Wolfe, A. Moskowitz, H. Smithline, L. Ngo, M.N. Cocchi, and Center for Resuscitation Science Research Group. 2016. Randomized, double-blind, placebo-controlled trial of thiamine as a metabolic resuscitator in septic shock: a pilot study. Critical Care Medicine 44 (2): 360–367.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Donnino, M.W., E. Carney, M.N. Cocchi, I. Barbash, M. Chase, N. Joyce, P.P. Chou, and L. Ngo. 2010. Thiamine deficiency in critically ill patients with sepsis. Journal of Critical Care 25 (4): 576–581.

    CAS  PubMed  Google Scholar 

  97. Costa, N.A., A.L. Gut, Dorna M. de Souza, J.A. Pimentel, S.M. Cozzolino, P.S. Azevedo, A.A. Fernandes, L.A. Zornoff, S.A. de Paiva, and M.F. Minicucci. 2014. Serum thiamine concentration and oxidative stress as predictors of mortality in patients with septic shock. Journal of Critical Care 29 (2): 249–252.

    CAS  PubMed  Google Scholar 

  98. Nuzzo, E., K.M. Berg, L.W. Andersen, J. Balkema, S. Montissol, M.N. Cocchi, X. Liu, and M.W. Donnino. 2015. Pyruvate dehydrogenase activity is decreased in the peripheral blood mononuclear cells of patients with Sepsis. A prospective observational trial. Annals of the American Thoracic Society 12 (11): 1662–1666.

    PubMed  PubMed Central  Google Scholar 

  99. McCall, C.E., M. Zabalawi, T. Liu, A. Martin, D.L. Long, N.L. Buechler, Arts RJW, M. Netea, B.K. Yoza, P.W. Stacpoole, et al. 2018. Pyruvate dehydrogenase complex stimulation promotes immunometabolic homeostasis and sepsis survival. JCI insight 3 (15).

  100. Woolum, J.A., E.L. Abner, A. Kelly, M.L. Thompson Bastin, P.E. Morris, and A.H. Flannery. 2018. Effect of thiamine administration on lactate clearance and mortality in patients with septic shock. Critical Care Medicine 46 (11): 1747–1752.

    CAS  PubMed  Google Scholar 

  101. Kim, J., L. Arnaout, and D. Remick. 2019. Hydrocortisone, ascorbic acid and thiamine (HAT) therapy decreases oxidative stress, improves cardiovascular function and improves survival in murine Sepsis. Shock (Augusta, Ga).

  102. Marik, P.E., V. Khangoora, R. Rivera, M.H. Hooper, and J. Catravas. 2017. Hydrocortisone, vitamin C, and thiamine for the treatment of severe Sepsis and septic shock: a retrospective before-after study. Chest 151 (6): 1229–1238.

    PubMed  Google Scholar 

  103. Litwak, J.J., N. Cho, H.B. Nguyen, K. Moussavi, and T. Bushell. 2019. Vitamin C, hydrocortisone, and thiamine for the treatment of severe sepsis and septic shock: a retrospective analysis of real-world application. Journal of clinical medicine 8 (4).

  104. Deng, S., Y. Ai, H. Gong, Q. Feng, X. Li, C. Chen, Z. Liu, Y. Wang, Q. Peng, and L. Zhang. 2018. Mitochondrial dynamics and protective effects of a mitochondrial division inhibitor, Mdivi-1, in lipopolysaccharide-induced brain damage. Biochemical and Biophysical Research Communications 496 (3): 865–871.

    CAS  PubMed  Google Scholar 

  105. Fredriksson, K., I. Tjäder, P. Keller, N. Petrovic, B. Ahlman, C. Schéele, J. Wernerman, J.A. Timmons, and O. Rooyackers. 2008. Dysregulation of mitochondrial dynamics and the muscle transcriptome in ICU patients suffering from sepsis induced multiple organ failure. PLoS One 3 (11): e3686.

    PubMed  PubMed Central  Google Scholar 

  106. Cooper, C.E., and G.C. Brown. 2008. The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. Journal of Bioenergetics and Biomembranes 40 (5): 533–539.

    CAS  PubMed  Google Scholar 

  107. Zegdi, R., D. Perrin, M. Burdin, R. Boiteau, and A. Tenaillon. 2002. Increased endogenous carbon monoxide production in severe sepsis. Intensive Care Medicine 28 (6): 793–796.

    PubMed  Google Scholar 

  108. Li, L., M. Bhatia, Y.Z. Zhu, Y.C. Zhu, R.D. Ramnath, Z.J. Wang, F.B. Anuar, M. Whiteman, M. Salto-Tellez, and P.K. Moore. 2005. Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology 19 (9): 1196–1198.

    CAS  Google Scholar 

  109. Ahmad, A., D. Gerö, G. Olah, and C. Szabo. 2016. Effect of endotoxemia in mice genetically deficient in cystathionine-γ-lyase, cystathionine-β-synthase or 3-mercaptopyruvate sulfurtransferase. International Journal of Molecular Medicine 38 (6): 1683–1692.

    PubMed  PubMed Central  Google Scholar 

  110. Yu, J., J. Shi, D. Wang, S. Dong, Y. Zhang, M. Wang, L. Gong, Q. Fu, and D. Liu. 2016. Heme oxygenase-1/carbon monoxide-regulated mitochondrial dynamic equilibrium contributes to the attenuation of endotoxin-induced acute lung injury in rats and in lipopolysaccharide-activated macrophages. Anesthesiology 125 (6): 1190–1201.

    CAS  PubMed  Google Scholar 

  111. Zhang, H.X., J.M. Du, Z.N. Ding, X.Y. Zhu, L. Jiang, and Y.J. Liu. 2017. Hydrogen sulfide prevents diaphragm weakness in cecal ligation puncture-induced sepsis by preservation of mitochondrial function. American Journal of Translational Research 9 (7): 3270–3281.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wagner, F., K. Wagner, S. Weber, B. Stahl, M.W. Knöferl, M. Huber-Lang, D.H. Seitz, P. Asfar, E. Calzia, U. Senftleben, et al. 2011. Inflammatory effects of hypothermia and inhaled H2S during resuscitated, hyperdynamic murine septic shock. Shock (Augusta, Ga) 35 (4): 396–402.

    CAS  Google Scholar 

  113. Ferlito, M., Q. Wang, W.B. Fulton, P.M. Colombani, L. Marchionni, K. Fox-Talbot, N. Paolocci, and C. Steenbergen. 2014. Hydrogen sulfide [corrected] increases survival during sepsis: protective effect of CHOP inhibition. Journal of immunology (Baltimore, Md : 1950) 192 (4): 1806–1814.

    CAS  Google Scholar 

  114. Liu, J., J. Li, P. Tian, B. Guli, G. Weng, L. Li, and Q. Cheng. 2019. HS attenuates sepsis-induced cardiac dysfunction via a PI3K/Akt-dependent mechanism. Experimental and Therapeutic Medicine 17 (5): 4064–4072.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang, H., S.M. Moochhala, and M. Bhatia. 2008. Endogenous hydrogen sulfide regulates inflammatory response by activating the ERK pathway in polymicrobial sepsis. Journal of immunology (Baltimore, Md : 1950) 181 (6): 4320–4331.

    CAS  Google Scholar 

  116. Otterbein, L.E., F.H. Bach, J. Alam, M. Soares, H. Tao Lu, M. Wysk, R.J. Davis, R.A. Flavell, and A.M. Choi. 2000. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nature Medicine 6 (4): 422–428.

    CAS  PubMed  Google Scholar 

  117. Mazzola, S., M. Forni, M. Albertini, M.L. Bacci, A. Zannoni, F. Gentilini, M. Lavitrano, F.H. Bach, L.E. Otterbein, and M.G. Clement. 2005. Carbon monoxide pretreatment prevents respiratory derangement and ameliorates hyperacute endotoxic shock in pigs. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology 19 (14): 2045–2047.

    CAS  Google Scholar 

  118. Mitchell, L.A., M.M. Channell, C.M. Royer, S.W. Ryter, A.M. Choi, and J.D. McDonald. 2010. Evaluation of inhaled carbon monoxide as an anti-inflammatory therapy in a nonhuman primate model of lung inflammation. American journal of physiology Lung cellular and molecular physiology 299 (6): L891–L897.

    CAS  PubMed  Google Scholar 

  119. Unuma, K., T. Aki, S. Nagano, R. Watanabe, and K. Uemura. 2018. The down-regulation of cardiac contractile proteins underlies myocardial depression during sepsis and is mitigated by carbon monoxide. Biochemical and Biophysical Research Communications 495 (2): 1668–1674.

    CAS  PubMed  Google Scholar 

  120. Zhang, W., A. Tao, T. Lan, G. Cepinskas, R. Kao, C.M. Martin, and T. Rui. 2017. Carbon monoxide releasing molecule-3 improves myocardial function in mice with sepsis by inhibiting NLRP3 inflammasome activation in cardiac fibroblasts. Basic Research in Cardiology 112 (2): 16.

    PubMed  Google Scholar 

  121. Lancel, S., S.M. Hassoun, R. Favory, B. Decoster, R. Motterlini, and R. Neviere. 2009. Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis. The Journal of Pharmacology and Experimental Therapeutics 329 (2): 641–648.

    CAS  PubMed  Google Scholar 

  122. Wang, P., J. Huang, Y. Li, R. Chang, H. Wu, J. Lin, and Z. Huang. 2015. Exogenous carbon monoxide decreases sepsis-induced acute kidney injury and inhibits NLRP3 inflammasome activation in rats. International Journal of Molecular Sciences 16 (9): 20595–20608.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Shi, J., J.B. Yu, W. Liu, D. Wang, Y. Zhang, L.R. Gong, S.A. Dong, and D.Q. Liu. 2016. Carbon monoxide alleviates lipopolysaccharide-induced oxidative stress injury through suppressing the expression of Fis1 in NR8383 cells. Experimental Cell Research 349 (1): 162–167.

    CAS  PubMed  Google Scholar 

  124. Mayr, F.B., A. Spiel, J. Leitner, C. Marsik, P. Germann, R. Ullrich, O. Wagner, and B. Jilma. 2005. Effects of carbon monoxide inhalation during experimental endotoxemia in humans. American Journal of Respiratory and Critical Care Medicine 171 (4): 354–360.

    PubMed  Google Scholar 

  125. Marik, P.E. 2018. Vitamin C for the treatment of sepsis: the scientific rationale. Pharmacology & Therapeutics 189: 63–70.

    CAS  Google Scholar 

  126. Galley, H.F., M.J. Davies, and N.R. Webster. 1996. Ascorbyl radical formation in patients with sepsis: effect of ascorbate loading. Free Radical Biology & Medicine 20 (1): 139–143.

    CAS  Google Scholar 

  127. Borrelli, E., P. Roux-Lombard, G.E. Grau, E. Girardin, B. Ricou, J. Dayer, and P.M. Suter. 1996. Plasma concentrations of cytokines, their soluble receptors, and antioxidant vitamins can predict the development of multiple organ failure in patients at risk. Critical Care Medicine 24 (3): 392–397.

    CAS  PubMed  Google Scholar 

  128. Fowler, A.A., A.A. Syed, S. Knowlson, R. Sculthorpe, D. Farthing, C. DeWilde, C.A. Farthing, T.L. Larus, E. Martin, D.F. Brophy, et al. 2014. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. Journal of Translational Medicine 12: 32.

    PubMed  PubMed Central  Google Scholar 

  129. Zabet, M.H., M. Mohammadi, M. Ramezani, and H. Khalili. Effect of high-dose ascorbic acid on vasopressor's requirement in septic shock. Journal of research in pharmacy practice 2016, 5 (2).

  130. Fowler, A.A., J.D. Truwit, R.D. Hite, P.E. Morris, C. DeWilde, A. Priday, B. Fisher, L.R. Thacker, R. Natarajan, D.F. Brophy, et al. 2019. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS-ALI randomized clinical trial. Jama 322 (13): 1261–1270.

    PubMed  PubMed Central  Google Scholar 

  131. Fujii, T., N. Luethi, P.J. Young, D.R. Frei, G.M. Eastwood, C.J. French, A.M. Deane, Y. Shehabi, L.A. Hajjar, G. Oliveira, et al. 2020. Effect of vitamin C, hydrocortisone, and thiamine vs hydrocortisone alone on time alive and free of vasopressor support among patients with septic shock: The VITAMINS randomized clinical trial. Jama 323 (5): 423–431.

    PubMed Central  Google Scholar 

  132. Prauchner, C.A. 2017. Oxidative stress in sepsis: pathophysiological implications justifying antioxidant co-therapy. Burns : journal of the International Society for Burn Injuries 43 (3): 471–485.

    Google Scholar 

Download references

Acknowledgments

We thank Accdon for its linguistic assistance during the preparation of this manuscript.

Funding

Dr. Zhaocai Zhang received funding from National Natural Science Foundation of China (No. 81772110). Dr. Yinchuan Xu received research grants from National Natural Science Foundation of China (No. 81971860 and No. 81500876); Natural Science Foundation of Zhejiang Province, China (No. LQ16H020003).

Author information

Authors and Affiliations

Authors

Contributions

Dr. Yao Lin and Dr. Yinchuan Xu performed literature searches, wrote the article, and designed the tables and figures. Dr. Yinchuan Xu and Dr. Zhaocai Zhang designed and revised the review.

Corresponding author

Correspondence to Zhaocai Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 392 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Xu, Y. & Zhang, Z. Sepsis-Induced Myocardial Dysfunction (SIMD): the Pathophysiological Mechanisms and Therapeutic Strategies Targeting Mitochondria. Inflammation 43, 1184–1200 (2020). https://doi.org/10.1007/s10753-020-01233-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01233-w

KEY WORDS

Navigation