Skip to main content
Log in

Myocardin-Related Transcription Factor A Mediates LPS-Induced iNOS Transactivation

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Macrophage-dependent inflammation plays a critical role in atherogenesis. Inducible nitric oxide synthase (iNOS) is one of key pro-inflammatory mediators produced in macrophages and its levels can be upregulated by lipopolysaccharide (LPS). The epigenetic mechanism whereby LPS induces iNOS transcription is incompletely understood. We show here myocardin-related transcription factor A (MRTF-A) potentiated iNOS promoter activity in macrophages. There was a decrease in LPS-induced iNOS expression in several cell models due to the lack of MRTF-A. LPS treatment promoted nuclear accumulation of MRTF-A and its interaction with NF-κB/p65 on the iNOS promoter. The absence of MRTF-A prevented the accumulation of active histone marks on the iNOS promoter in response to LPS treatment. Mechanistically, MRTF-A recruited ASH2, a key component of the mammalian histone H3K4 methyltransferase complex, to the iNOS promoter. Silencing of ASH2 attenuated iNOS expression following LPS treatment. Together, our data highlight a role for MRTF-A-dependent recruitment of H3K4 methyltransferase in iNOS induction and as such provide a novel target in the intervention of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Libby, P., P.M. Ridker, and A. Maseri. 2002. Inflammation and atherosclerosis. Circulation 105: 1135–1143.

    CAS  Google Scholar 

  2. Weber, C., A. Zernecke, and P. Libby. 2008. The multifaceted contributions of leukocyte subsets to atherosclerosis: Lessons from mouse models. Nature Reviews Immunology 8: 802–815.

    CAS  PubMed  Google Scholar 

  3. Stoneman, V., D. Braganza, N. Figg, J. Mercer, R. Lang, M. Goddard, and M. Bennett. 2007. Monocyte/macrophage suppression in CD11b diphtheria toxin receptor transgenic mice differentially affects atherogenesis and established plaques. Circulation Research 100: 884–893.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Esaki, T., T. Hayashi, E. Muto, K. Yamada, M. Kuzuya, and A. Iguchi. 1997. Expression of inducible nitric oxide synthase in T lymphocytes and macrophages of cholesterol-fed rabbits. Atherosclerosis 128: 9–46.

    Google Scholar 

  5. Behr-Roussel, D., A. Rupin, S. Simonet, E. Bonhomme, S. Coumailleau, A. Cordi, B. Serkiz, J.N. Fabiani, and T.J. Verbeuren. 2000. Effect of chronic treatment with the inducible nitric oxide synthase inhibitor N-iminoethyl-L-lysine or with L-arginine on progression of coronary and aortic atherosclerosis in hypercholesterolemic rabbits. Circulation 102: 1033–1038.

    CAS  PubMed  Google Scholar 

  6. Kuhlencordt, P.J., J. Chen, F. Han, J. Astern, and P.L. Huang. 2001. Genetic deficiency of inducible nitric oxide synthase reduces atherosclerosis and lowers plasma lipid peroxides in apolipoprotein E-knockout mice. Circulation 103: 3099–3104.

    CAS  PubMed  Google Scholar 

  7. Huang, H., P. Koelle, M. Fendler, A. Schrottle, M. Czihal, U. Hoffmann, M. Conrad, and P.J. Kuhlencordt. 2014. Induction of inducible nitric oxide synthase (iNOS) expression by oxLDL inhibits macrophage derived foam cell migration. Atherosclerosis 235: 213–222.

    CAS  PubMed  Google Scholar 

  8. Sharma, K., T.M. Danoff, A. DePiero, and F.N. Ziyadeh. 1995. Enhanced expression of inducible nitric oxide synthase in murine macrophages and glomerular mesangial cells by elevated glucose levels: Possible mediation via protein kinase C. Biochemical and Biophysical Research Communications 207: 80–88.

    CAS  PubMed  Google Scholar 

  9. Bogdan, C., Y. Vodovotz, J. Paik, Q.W. Xie, and C. Nathan. 1993. Traces of bacterial lipopolysaccharide suppress IFN-gamma-induced nitric oxide synthase gene expression in primary mouse macrophages. Journal of Immunology 151: 301–309.

    CAS  Google Scholar 

  10. Spink, J., J. Cohen, and T.J. Evans. 1995. The cytokine responsive vascular smooth muscle cell enhancer of inducible nitric oxide synthase. Activation by nuclear factor-kappa B. Journal of Biological Chemistry 270: 29541–29547.

    CAS  PubMed  Google Scholar 

  11. Smale, S.T. 2011. Hierarchies of NF-kappaB target-gene regulation. Nature Immunology 12: 689–694.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu, X.H., P.K. Shah, E. Faure, O. Equils, L. Thomas, M.C. Fishbein, D. Luthringer, X.P. Xu, T.B. Rajavashisth, J. Yano, S. Kaul, and M. Arditi. 2001. Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 104: 3103–3108.

    CAS  PubMed  Google Scholar 

  13. Edfeldt, K., J. Swedenborg, G.K. Hansson, and Z.Q. Yan. 2002. Expression of toll-like receptors in human atherosclerotic lesions: A possible pathway for plaque activation. Circulation 105: 1158–1161.

    CAS  PubMed  Google Scholar 

  14. Fang, F., Y. Yang, Z. Yuan, Y. Gao, J. Zhou, Q. Chen, and Y. Xu. 2011. Myocardin-related transcription factor a mediates OxLDL-induced endothelial injury. Circulation Research 108: 797–807.

    CAS  PubMed  Google Scholar 

  15. Yang, Y., D. Chen, Z. Yuan, F. Fang, X. Cheng, J. Xia, M. Fang, Y. Xu, and Y. Gao. 2013. Megakaryocytic leukemia 1 (MKL1) ties the epigenetic machinery to hypoxia-induced transactivation of endothelin-1. Nucleic Acids Research 41: 6005–6017.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu, Y., L. Qian, G. Zong, K. Ma, X. Zhu, H. Zhang, N. Li, Q. Yang, H. Bai, J. Ben, X. Li, and Q. Chen. 2012. Class A scavenger receptor promotes cerebral ischemic injury by pivoting microglia/macrophage polarization. Neuroscience 218: 35–48.

    CAS  PubMed  Google Scholar 

  17. Sun, Y., K. Boyd, W. Xu, J. Ma, C.W. Jackson, A. Fu, J.M. Shillingford, G.W. Robinson, L. Hennighausen, J.K. Hitzler, Z. Ma, and S.W. Morris. 2006. Acute myeloid leukemia-associated Mkl1 (Mrtf-a) is a key regulator of mammary gland function. Molecular and Cellular Biology 26: 5809–5826.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu, M., P.F. Wang, J.S. Lee, S. Martin-Brown, L. Florens, M. Washburn, and A. Shilatifard. 2008. Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS. Molecular and Cellular Biology 28: 337–7344.

    Google Scholar 

  19. Crosby, M.B., J. Svenson, G.S. Gilkeson, and T.K. Nowling. 2005. A novel PPAR response element in the murine iNOS promoter. Molecular Immunology 42: 1303–1310.

    CAS  PubMed  Google Scholar 

  20. Chen, D., F. Fang, Y. Yang, J. Chen, G. Xu, Y. Xu, and Y. Gao. 2013. Brahma-related gene 1 (Brg1) epigenetically regulates CAM activation during hypoxic pulmonary hypertension. Cardiovascular Research 100: 63–373.

    Google Scholar 

  21. Fang, F., D. Chen, L. Yu, X. Dai, Y. Yang, W. Tian, X. Cheng, H. Xu, X. Weng, M. Fang, J. Zhou, Y. Gao, Q. Chen, and Y. Xu. 2013. Proinflammatory stimuli engage brahma related gene 1 and brahma in endothelial injury. Circulation Research 113: 986–996.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun, L., H. Li, J. Chen, V. Dehennaut, Y. Zhao, Y. Yang, Y. Iwasaki, B. Kahn-Perles, D. Leprince, Q. Chen, A. Shen, and Y. Xu. 2013. A SUMOylation-dependent pathway regulates SIRT1 transcription and lung cancer metastasis. Journal of the National Cancer Institute 105: 887–898.

    CAS  PubMed  Google Scholar 

  23. Tsutsuki, H., K. Yahiro, K. Suzuki, A. Suto, K. Ogura, S. Nagasawa, H. Ihara, T. Shimizu, H. Nakajima, J. Moss, and M. Noda. 2012. Subtilase cytotoxin enhances Escherichia coli survival in macrophages by suppression of nitric oxide production through the inhibition of NF-kappaB activation. Infection and Immunity 80: 3939–3951.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Pindado, J., J. Balsinde, and M.A. Balboa. 2007. TLR3-dependent induction of nitric oxide synthase in RAW 264.7 macrophage-like cells via a cytosolic phospholipase A2/cyclooxygenase-2 pathway. Journal of Immunology 179: 4821–4828.

    CAS  Google Scholar 

  25. Evelyn, C., S. Wade, Q. Wang, M. Wu, J.A. Iniguez-Lluhi, S.D. Merajver, and R.R. Neubig. 2007. CCG-1423: A small-molecule inhibitor of RhoA transcriptional signaling. Molecular Cancer Therapeutics 6: 2249–2260.

    CAS  PubMed  Google Scholar 

  26. Zhou, B., A. Margariti, L. Zeng, and Q. Xu. 2011. Role of histone deacetylases in vascular cell homeostasis and arteriosclerosis. Cardiovascular Research 90: 413–420.

    CAS  PubMed  Google Scholar 

  27. Wierda, R.J., S.B. Geutskens, J.W. Jukema, P.H. Quax, and P.J. van den Elsen. 2010. Epigenetics in atherosclerosis and inflammation. Journal of Cellular and Molecular Medicine 14: 1225–1240.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lund, G., and S. Zaina. 2007. Atherosclerosis, lipids, inflammation and epigenetics. Current Opinion in Lipidology 18: 699–701.

    CAS  PubMed  Google Scholar 

  29. Alexander, M.R., and G.K. Owens. 2012. Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease. Annual Review of Physiology 74: 3–40.

    Google Scholar 

  30. Ara, A.I., M. Xia, K. Ramani, J.M. Mato, and S.C. Lu. 2008. S-Adenosylmethionine inhibits lipopolysaccharide-induced gene expression via modulation of histone methylation. Hepatology 47: 1655–1666.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Alkemade, F.E., P. van Vliet, P. Henneman, K.W. van Dijk, B.P. Hierck, J.C. van Munsteren, J.A. Scheerman, J.J. Goeman, L.M. Havekes, A.C. Gittenberger-de Groot, P.J. van den Elsen, and M.C. DeRuiter. 2010. Prenatal exposure to apoE deficiency and postnatal hypercholesterolemia are associated with altered cell-specific lysine methyltransferase and histone methylation patterns in the vasculature. American Journal of Pathology 176: 542–548.

    CAS  PubMed  Google Scholar 

  32. Hanna, M., H. Liu, J. Amir, Y. Sun, S.W. Morris, M.A. Siddiqui, L.F. Lau, and B. Chaqour. 2009. Mechanical regulation of the proangiogenic factor CCN1/CYR61 gene requires the combined activities of MRTF-A and CREB-binding protein histone acetyltransferase. Journal of Biological Chemistry 284: 23125–23136.

    CAS  PubMed  Google Scholar 

  33. Lockman, K., J.M. Taylor, and C.P. Mack. 2007. The histone demethylase, Jmjd1a, interacts with the myocardin factors to regulate SMC differentiation marker gene expression. Circulation Research 101: 115–123.

    Google Scholar 

  34. Zhang, M., H. Fang, J. Zhou, and B.P. Herring. 2007. A novel role of Brg1 in the regulation of SRF/MRTFA-dependent smooth muscle-specific gene expression. Journal of Biological Chemistry 282: 25708–25716.

    CAS  PubMed  Google Scholar 

  35. Zhan, Y., Z. Wang, P. Yang, T. Wang, L. Xia, M. Zhou, Y. Wang, S. Wang, Z. Hua, and J. Zhang. 2014. Adenosine 5′-monophosphate ameliorates D-galactosamine/lipopolysaccharide-induced liver injury through an adenosine receptor-independent mechanism in mice. Cell Death Disease 5: e985.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Angrisano, T., R. Pero, S. Peluso, S. Keller, S. Sacchetti, C.B. Bruni, L. Chiariotti, and F. Lembo. 2010. LPS-induced IL-8 activation in human intestinal epithelial cells is accompanied by specific histone H3 acetylation and methylation changes. BMC Microbiology 10: 172.

    PubMed  PubMed Central  Google Scholar 

  37. El Mezayen, R., M. El Gazzar, R. Myer, and K.P. High. 2009. Aging-dependent upregulation of IL-23p19 gene expression in dendritic cells is associated with differential transcription factor binding and histone modifications. Aging Cell 8: 553–565.

    PubMed  PubMed Central  Google Scholar 

  38. Rus, H.G., R. Vlaicu, and F. Niculescu. 1996. Interleukin-6 and interleukin-8 protein and gene expression in human arterial atherosclerotic wall. Atherosclerosis 127: 263–271.

    CAS  PubMed  Google Scholar 

  39. Salagianni, M., I.E. Galani, A.M. Lundberg, C.H. Davos, A. Varela, A. Gavriil, L.P. Lyytikainen, T. Lehtimaki, F. Sigala, L. Folkersen, V. Gorgoulis, S. Lenglet, F. Montecucco, F. Mach, U. Hedin, G.K. Hansson, C. Monaco, and E. Andreakos. 2012. Toll-like receptor 7 protects from atherosclerosis by constraining “inflammatory” macrophage activation. Circulation 126: 952–962.

    CAS  PubMed  Google Scholar 

  40. Elkind, M.S., J. Cheng, B. Boden-Albala, T. Rundek, J. Thomas, H. Chen, L.E. Rabbani, and R.L. Sacco. 2002. Tumor necrosis factor receptor levels are associated with carotid atherosclerosis. Stroke 33: 31–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Minami, T., K. Kuwahara, Y. Nakagawa, M. Takaoka, H. Kinoshita, K. Nakao, Y. Kuwabara, Y. Yamada, C. Yamada, J. Shibata, S. Usami, S. Yasuno, T. Nishikimi, K. Ueshima, M. Sata, H. Nakano, T. Seno, Y. Kawahito, K. Sobue, A. Kimura, and R. Nagai. 2012. Reciprocal expression of MRTF-A and myocardin is crucial for pathological vascular remodelling in mice. EMBO Journal 31: 4428–4440.

    CAS  PubMed  Google Scholar 

  42. Olson, E.N., and A. Nordheim. 2010. Linking actin dynamics and gene transcription to drive cellular motile functions. Nature Reviews Molecular Cell Biology 11: 353–365.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kustermans, G., N. El Mjiyad, J. Horion, N. Jacobs, J. Piette, and S. Legrand-Poels. 2008. Actin cytoskeleton differentially modulates NF-kappaB-mediated IL-8 expression in myelomonocytic cells. Biochemical Pharmacology 76: 1214–1228.

    CAS  PubMed  Google Scholar 

  44. Nemeth, Z.H., E.A. Deitch, M.T. Davidson, C. Szabo, E.S. Vizi, and G. Hasko. 2004. Disruption of the actin cytoskeleton results in nuclear factor-kappaB activation and inflammatory mediator production in cultured human intestinal epithelial cells. Journal of Cellular Physiology 200: 71–81.

    CAS  PubMed  Google Scholar 

  45. Dittmer, T.A., and T. Misteli. 2011. The lamin protein family. Genome Biology 12: 222.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Percipalle, P. 2013. Co-transcriptional nuclear actin dynamics. Nucleus 4: 43–52.

    PubMed  PubMed Central  Google Scholar 

  47. Martins, R.P., J.D. Finan, F. Guilak, and D.A. Lee. 2012. Mechanical regulation of nuclear structure and function. Annual Review of Biomedical Engineering 14: 431–455.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported, in part, by the National Natural Science Foundation of China (No. 81870326), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, and Six talent peaks project in Jiangsu Province.

Author information

Authors and Affiliations

Authors

Contributions

Yuyu Yang designed the study and wrote the manuscript; Lin Lin and Qiumei Zhang performed the research; Hongwei Fan and Hongwei Zhao prepared the experiment.

Corresponding author

Correspondence to Yuyu Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Zhang, Q., Fan, H. et al. Myocardin-Related Transcription Factor A Mediates LPS-Induced iNOS Transactivation. Inflammation 43, 1351–1361 (2020). https://doi.org/10.1007/s10753-020-01213-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01213-0

Key Words

Navigation