Skip to main content

Advertisement

Log in

Salidroside Restores an Anti-inflammatory Endothelial Phenotype by Selectively Inhibiting Endothelial Complement After Oxidative Stress

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Salidroside, an active component of Rhodiola rosea, reduces inflammation and neuronal damage after middle cerebral artery occlusion (MCAO) with reperfusion, partly by inhibiting cerebral complement C3 activation. However, the mechanisms of this inhibition are not fully understood. In this study, we investigated which cerebral cells might contribute to the inhibition of complement by salidroside and the consequences of this inhibition. We used human umbilical endothelial cells (HUVEC) as a model of cerebral endothelium and found that salidroside prevented the increases of C3 and its active fragment C3a, and the associated increases in C1q and C2, otherwise caused by oxygen-glucose deprivation followed by restoration (OGD/R). However, salidroside did not affect C1q, C2 or C3 in astrocytes and microglial BV2 cells after OGD/R. Salidroside also prevented the decreases in CD46 and CD59, and the increases in VCAM-1, ICAM-1, P-selectin and E-selectin caused by OGD/R in HUVEC, which were associated with decreasing LDH release and increasing Bcl-2/Bax ratio. None of these effects of salidroside occurred in the absence of oxygen-glucose restoration. Moreover, salidroside and C3a receptor antagonist reduced the markers of endothelial activation and neutrophil adhesion to HUVEC after OGD/R to similar extents, and their effects were not additive. Correspondingly, salidroside reduced the markers of endothelial activation and neutrophilic infiltration in the rat brains after MCAO with reperfusion. These results suggest endothelium is an important locus of inhibition of complement by salidroside, restoring an anti-inflammatory endothelial phenotype after oxidative stress, partly by inhibiting classical complement activation and partly by increasing CD46 and CD59, in association with anti-apoptotic effects. These endothelial effects may contribute to the protection afforded by salidroside in cerebral ischemia-reperfusion injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alawieh, A., A. Elvington, and S. Tomlinson. 2015. Complement in the homeostatic and ischemic brain. Frontiers in Immunology 6: 417.

    PubMed Central  PubMed  Google Scholar 

  2. Walker, D.G., S.U. Kim, and P.L. McGeer. 1995. Complement and cytokine gene expression in cultured microglial derived from postmortem human brains. Journal of Neuroscience Research 40 (4): 478–493.

    CAS  PubMed  Google Scholar 

  3. Maranto, J., J. Rappaport, and P.K. Datta. 2008. Regulation of complement component C3 in astrocytes by IL-1beta and morphine. Journal of Neuroimmune Pharmacology 3 (1): 43–51.

    PubMed  Google Scholar 

  4. Hosokawa, M., A. Klegeris, J. Maguire, and P. McGeer. 2003. Expression of complement messenger RNAs and proteins by human oligodendroglial cells. Glia 42 (4): 417–423.

    PubMed  Google Scholar 

  5. Janssen, B.J., E.G. Huizinga, H.C. Raaijmakers, A. Roos, M.R. Daha, K. Nilsson-Ekdahl, B. Nilsson, and P. Gros. 2005. Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 437 (7058): 505–511.

    CAS  PubMed  Google Scholar 

  6. Thiel, S., T. Vorup-Jensen, C.M. Stover, W. Schwaeble, S.B. Laursen, K. Poulsen, A.C. Willis, P. Eggleton, S. Hansen, U. Holmskov, K.B. Reid, and J.C. Jensenius. 1997. A second serine protease associated with mannan-binding lectin that activates complement. Nature 386 (6624): 506–510.

    CAS  PubMed  Google Scholar 

  7. Elvington, A., et al. 2012. Pathogenic natural antibodies propagate cerebral injury following ischemic stroke in mice. Journal of Immunology 188 (3): 1460–1468.

    CAS  Google Scholar 

  8. Brennan, F.H., J.D. Lee, M.J. Ruitenberg, and T.M. Woodruff. 2016. Therapeutic targeting of complement to modify disease course and improve outcomes in neurological conditions. Seminars in Immunology 28 (3): 292–308.

    CAS  PubMed  Google Scholar 

  9. Arumugam, T.V., T.M. Woodruff, J.D. Lathia, P.K. Selvaraj, M.P. Mattson, and S.M. Taylor. 2009. Neuroprotection in stroke by complement inhibition and immunoglobulin therapy. Neuroscience 158 (3): 1074–1089.

    CAS  PubMed  Google Scholar 

  10. Lai, W., Z. Zheng, X. Zhang, Y. Wei, K. Chu, J. Brown, G. Hong, and L. Chen. 2015. Salidroside-mediated neuroprotection is associated with induction of early growth response genes (Egrs) across a wide therapeutic window. Neurotoxicity Research 28 (2): 108–121.

    CAS  PubMed  Google Scholar 

  11. Wei, Y., H. Hong, X. Zhang, W. Lai, Y. Wang, K. Chu, J. Brown, G. Hong, and L. Chen. 2017. Salidroside inhibits inflammation through PI3K/Akt/HIF signaling after focal cerebral ischemia in rats. Inflammation 40 (4): 1297–1309.

    CAS  PubMed  Google Scholar 

  12. Lai, W., X. Xie, X. Zhang, Y. Wang, K. Chu, J. Brown, L. Chen, and G. Hong. 2018. Inhibition of complement drives increase in early growth response proteins and neuroprotection mediated by salidroside after cerebral ischemia. Inflammation 41 (2): 449–463.

    CAS  PubMed  Google Scholar 

  13. Zhang, X., W. Lai, X. Ying, L. Xu, K. Chu, J. Brown, L. Chen, and G. Hong. 2019. Salidroside reduces inflammation and brain injury after permanent middle cerebral artery occlusion in rats by regulating PI3K/PKB/Nrf2/NFkappaB signaling rather than complement C3 activity. Inflammation 42: 1830–1842. https://doi.org/10.1007/s10753-019-01045-7.

    Article  CAS  PubMed  Google Scholar 

  14. Dimpfel, W., L. Schombert, and A.G. Panossian. 2018. Assessing the quality and potential efficacy of commercial extracts of rhodiola rosea l. By analysing the salidroside and rosavin content and the electrophysiological activity in hippocampal long-term potentiation, a synaptic model of memory. Frontiers in Pharmacology 9: 425.

    PubMed Central  PubMed  Google Scholar 

  15. Shi, T.Y., et al. 2012. Neuroprotective effects of salidroside and its analogue tyrosol galactoside against focal cerebral ischemia in vivo and H2O2-induced neurotoxicity in vitro. Neurotoxicity Research 21 (4): 358–367.

    CAS  PubMed  Google Scholar 

  16. Crotti, A., C. Benner, B.E. Kerman, D. Gosselin, C. Lagier-Tourenne, C. Zuccato, E. Cattaneo, F.H. Gage, D.W. Cleveland, and C.K. Glass. 2014. Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nature Neuroscience 17 (4): 513–521.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Horvath, R.J., N. Nutile-McMenemy, M.S. Alkaitis, and J.A. Deleo. 2008. Differential migration, LPS-induced cytokine, chemokine, and NO expression in immortalized BV-2 and HAPI cell lines and primary microglial cultures. Journal of Neurochemistry 107 (2): 557–569.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Stansley, B., J. Post, and K. Hensley. 2012. A comparative review of cell culture systems for the study of microglial biology in Alzheimer's disease. Journal of Neuroinflammation 9: 115.

    PubMed Central  PubMed  Google Scholar 

  19. Henn, A., et al. 2009. The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX 26 (2): 83–94.

    PubMed  Google Scholar 

  20. Klegeris, A., C.J. Bissonnette, K. Dorovini-Zis, and P. McGeer. 2000. Expression of complement messenger RNAs by human endothelial cells. Brain Research 871 (1): 1–6.

    CAS  PubMed  Google Scholar 

  21. Rikitake, Y., and J.K. Liao. 2005. Rho-kinase mediates hyperglycemia-induced plasminogen activator inhibitor-1 expression in vascular endothelial cells. Circulation 111 (24): 3261–3268.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Defazio, G., M. Gelati, E. Corsini, B. Nico, A. Dufour, G. Massa, and A. Salmaggi. 2001. In vitro modulation of adhesion molecules, adhesion phenomena, and fluid phase endocytosis on human umbilical vein endothelial cells and brain-derived microvascular endothelium by IFN-beta 1a. Journal of Interferon & Cytokine Research 21 (5): 267–272.

    CAS  Google Scholar 

  23. Ichikawa, H., S. Flores, P.R. Kvietys, R.E. Wolf, T. Yoshikawa, D.N. Granger, and T.Y. Aw. 1997. Molecular mechanisms of anoxia/reoxygenation-induced neutrophil adherence to cultured endothelial cells. Circulation Research 81 (6): 922–931.

    CAS  PubMed  Google Scholar 

  24. Collard, C.D., et al. 1999. Endothelial nuclear factor-kappaB translocation and vascular cell adhesion molecule-1 induction by complement: Inhibition with anti-human C5 therapy or cGMP analogues. Arteriosclerosis, Thrombosis, and Vascular Biology 19 (11): 2623–2629.

    CAS  PubMed  Google Scholar 

  25. Hess, D.C., W. Zhao, J. Carroll, M. McEachin, and K. Buchanan. 1994. Increased expression of ICAM-1 during reoxygenation in brain endothelial cells. Stroke 25 (7): 1463–1467 discussion 1468.

    CAS  PubMed  Google Scholar 

  26. Howard, E.F., Q. Chen, C. Cheng, J.E. Carroll, and D. Hess. 1998. NF-kappa B is activated and ICAM-1 gene expression is upregulated during reoxygenation of human brain endothelial cells. Neuroscience Letters 248 (3): 199–203.

    CAS  PubMed  Google Scholar 

  27. Stanimirovic, D.B., J. Wong, A. Shapiro, and J.P. Durkin. 1997. Increase in surface expression of ICAM-1, VCAM-1 and E-selectin in human cerebromicrovascular endothelial cells subjected to ischemia-like insults. Acta Neurochirurgica. Supplement 70: 12–16.

    CAS  PubMed  Google Scholar 

  28. Collard, C.D., A. Väkevä, C. Büküsoglu, G. Zünd, C.J. Sperati, S.P. Colgan, and G.L. Stahl. 1997. Reoxygenation of hypoxic human umbilical vein endothelial cells activates the classic complement pathway. Circulation 96 (1): 326–333.

    CAS  PubMed  Google Scholar 

  29. McCarthy, K.D., and J. de Vellis. 1980. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. The Journal of Cell Biology 85 (3): 890–902.

    CAS  PubMed  Google Scholar 

  30. Ducruet, A.F., B.G. Hassid, W.J. Mack, S.A. Sosunov, M.L. Otten, D.J. Fusco, Z.L. Hickman, G.H. Kim, R.J. Komotar, J. Mocco, and E.S. Connolly. 2008. C3a receptor modulation of granulocyte infiltration after murine focal cerebral ischemia is reperfusion dependent. Journal of Cerebral Blood Flow and Metabolism 28 (5): 1048–1058.

    CAS  PubMed  Google Scholar 

  31. Longa, E.Z., P.R. Weinstein, S. Carlson, and R. Cummins. 1989. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20 (1): 84–91.

    CAS  PubMed  Google Scholar 

  32. Oh, H., B. Siano, and S. Diamond. 2008. Neutrophil isolation protocol. Journal of Visualized Experiments 17: 745.

    Google Scholar 

  33. Jiao, J., et al. 2014. Central role of conventional dendritic cells in regulation of bone marrow release and survival of neutrophils. Journal of Immunology 192 (7): 3374–3382.

    CAS  Google Scholar 

  34. Noris, M., and G. Remuzzi. 2013. Overview of complement activation and regulation. Seminars in Nephrology 33 (6): 479–492.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Collard, C.D., A. Agah, and G.L. Stahl. 1998. Complement activation following reoxygenation of hypoxic human endothelial cells: Role of intracellular reactive oxygen species, NF-kappaB and new protein synthesis. Immunopharmacology 39 (1): 39–50.

    CAS  PubMed  Google Scholar 

  36. Oglesby, T.J., C.J. Allen, M.K. Liszewski, D.J. White, and J.P. Atkinson. 1992. Membrane cofactor protein (CD46) protects cells from complement-mediated attack by an intrinsic mechanism. The Journal of Experimental Medicine 175 (6): 1547–1551.

    CAS  PubMed  Google Scholar 

  37. Schmidt, C.Q., J.D. Lambris, and D. Ricklin. 2016. Protection of host cells by complement regulators. Immunological Reviews 274 (1): 152–171.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Harhausen, D., et al. 2010. Membrane attack complex inhibitor CD59a protects against focal cerebral ischemia in mice. Journal of Neuroinflammation 7: 15.

    PubMed Central  PubMed  Google Scholar 

  39. Zhu, Y., et al. 2016. Salidroside suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. Molecules 21 (8): 1033.

    CAS  PubMed Central  Google Scholar 

  40. Zhu, Z., J. Li, and X. Zhang. 2019. Salidroside protects against ox-LDL-induced endothelial injury by enhancing autophagy mediated by SIRT1-FoxO1 pathway. BMC Complementary and Alternative Medicine 19 (1): 111.

    PubMed Central  PubMed  Google Scholar 

  41. Wang, C.Y., Z.N. Sun, and M.X. Wang. 2018. SIRT1 mediates salidroside-elicited protective effects against MPP+ -induced apoptosis and oxidative stress in SH-SY5Y cells: Involvement in suppressing MAPK pathways. Cell Biology International 42 (1): 84–94.

    CAS  PubMed  Google Scholar 

  42. Zhao, D., X. Sun, S. Lv, M. Sun, H. Guo, Y. Zhai, Z. Wang, P. Dai, L. Zheng, M. Ye, and X. Wang. 2019. Salidroside attenuates oxidized low-density lipoprotein-induced endothelial cell injury via promotion of the AMPK/SIRT1 pathway. International Journal of Molecular Medicine 43 (6): 2279–2290.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Xu, F., J. Xu, and X. Xiong. 2019. Salidroside inhibits MAPK, NF-κB, and STAT3 pathways in psoriasis-associated oxidative stress via SIRT1 activation. Redox Report 24 (1): 70–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Duvall, M.R., H.Y. Hwang, and R.J. Boackle. 2010. Specific inhibition of the classical complement pathway with an engineered single-chain Fv to C1q globular heads decreases complement activation by apoptotic cells. Immunobiology 215 (5): 395–405.

    CAS  PubMed  Google Scholar 

  45. Tsuji, S., K. Kaji, and S. Nagasawa. 1994. Activation of the alternative pathway of human complement by apoptotic human umbilical vein endothelial cells. Journal of Biochemistry 116 (4): 794–800.

    CAS  PubMed  Google Scholar 

  46. Zhang, R., M. Chopp, Z. Zhang, N. Jiang, and C. Powers. 1998. The expression of P- and E-selectins in three models of middle cerebral artery occlusion. Brain Research 785 (2): 207–214.

    CAS  PubMed  Google Scholar 

  47. Zhang, R.L., M. Chopp, C. Zaloga, Z.G. Zhang, N. Jiang, S.C. Gautam, W.X. Tang, W. Tsang, D.C. Anderson, and A.M. Manning. 1995. The temporal profiles of ICAM-1 protein and mRNA expression after transient MCA occlusion in the rat. Brain Research 682 (1-2): 182–188.

    CAS  PubMed  Google Scholar 

  48. Atkinson, C., et al. 2006. Complement-dependent P-selectin expression and injury following ischemic stroke. Journal of Immunology 177 (10): 7266–7274.

    CAS  Google Scholar 

  49. Yilmaz, G., and D.N. Granger. 2008. Cell adhesion molecules and ischemic stroke. Neurological Research 30 (8): 783–793.

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the staff in the Animal Center of the Fujian University of TCM for their technical support.

Funding

This work was supported by the National Natural Science Foundation of China (projects 81473382 and 81603323), the Collaborative Innovation Center for Rehabilitation Technology of Fujian University of TCM, the TCM Rehabilitation Research of SATCM (X2018002-Collaborative) and the Young Talent Training Project provided by the Health Committee of Fujian Province (2019-ZQN-74).

Author information

Authors and Affiliations

Author notes

  1. Y Wang and Y Su contributed equally to this work.

    Authors

    Corresponding author

    Correspondence to G Hong.

    Ethics declarations

    Conflict of Interest

    The authors declare that they have no competing interests.

    Additional information

    Publisher’s Note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    Electronic supplementary material

    ESM 1

    (DOCX 376 kb)

    ESM 2

    (DOCX 35 kb)

    ESM 3

    (DOCX 393 kb)

    ESM 4

    (DOCX 386 kb)

    Rights and permissions

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Wang, Y., Su, Y., Lai, W. et al. Salidroside Restores an Anti-inflammatory Endothelial Phenotype by Selectively Inhibiting Endothelial Complement After Oxidative Stress. Inflammation 43, 310–325 (2020). https://doi.org/10.1007/s10753-019-01121-y

    Download citation

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s10753-019-01121-y

    KEY WORDS

    Navigation