Skip to main content

Advertisement

Log in

Pleural Effusion IL-33/sST2 Levels and Effects of Low and High IL-33/sST2 Levels on Human Mesothelial Cell Adhesion and Migration

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Interleukin 33 (IL-33) is an alarmin with multiple roles in immunity and cell homeostasis, highly expressed in barrier sites, acting via the suppression of tumorigenicity 2 receptor (ST2). Production of IL-33 and soluble ST2 (sST2), a decoy receptor for IL-33, has been implicated in several pulmonary diseases, but both have been scarcely investigated in pleural diseases. The aim of this study was to determine the levels of IL-33 and sST2 in transudative (TrPEs), malignant (MPEs), and parapneumonic (PPEs) pleural effusions (PEs) and investigate the effect of PE fluids from each group with low and high IL-33/sST2 levels on MeT-5A cell adhesion and migration. IL-33 and sST2 pleural fluid levels were similar among TrPEs, MPEs, and PPEs. However, a significant correlation was found between IL-33 and LDH and in sST2 levels with lymphocyte counts in TrPEs. Additionally, in MPEs the levels of IL-33 correlated with the levels of sST2 and with the red blood cell counts. Furthermore, incubation of MeT-5A cells with MPEs and PPEs bearing low or high levels of IL-33/sST2 yielded significant differential effects on MeT-5A cell adhesion and migration. In MPEs, high IL-33/sST2 levels led to increased adhesion and migration of MeT-5A cells, while in PPEs the effect was the opposite, while no effect in both cell phenotypes was determined for TrPEs. These results reveal a clinical context dependent effect of the IL-33/sST2 axis in PEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chang, J., Y.F. Xia, M.Z. Zhang, and L.M. Zhang. 2016. IL-33 signaling in lung injury. Translational Perioperative Pain Medicine 1: 24–32.

    PubMed  Google Scholar 

  2. Liew, F.Y., N.I. Pitman, and I.B. McInnes. 2010. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nature Reviews Immunology 10: 103–110. https://doi.org/10.1038/nri2692.

    Article  CAS  PubMed  Google Scholar 

  3. Martin, N.T., and M.U. Martin. 2016. Interleukin 33 is a guardian of barriers and a local alarmin. Nature Immunology 17: 122–131. https://doi.org/10.1038/ni.3370.

    Article  CAS  PubMed  Google Scholar 

  4. Griesenauer, B., and S. Paczesny. 2017. ST2/IL33 axis in immune cells during inflammatory diseases. Frontiers in Immunology 8: 475. https://doi.org/10.3389/fimmu.2017.00475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bajwa, E.K., J.A. Volk, D.C. Christiani, R.S. Harris, M.A. Matthay, B.T. Thompson, J.L. Januzzi, and National Heart, Lung and Blood Institute Acute Respiratory Distress Syndrome Network. 2013. Prognostic and diagnostic value of plasma soluble suppression of tumorigenicity-2 concentrations in acute respiratory distress syndrome. Critical Care Medicine 41: 2521–2531. https://doi.org/10.1097/CCM.0b013e3182978f91.

    Article  CAS  PubMed  Google Scholar 

  6. Tajima, S., K. Oshikawa, S. Tominaga, and Y. Sugiyama. 2003. The increase in serum soluble ST2 protein upon acute exacerbation of idiopathic pulmonary fibrosis. Chest 124: 1206–1214.

    Article  CAS  Google Scholar 

  7. Tzeng, H.T., C.C. Su, C.P. Chang, W.W. Lai, W.C. Su, and Y.C. Wang. 2018. Rab37 in lung cancer mediates exocytosis of soluble ST2 and thus skews macrophages towards tumor-suppressing phenotype. International Journal of Cancer 143: 1753–1763. https://doi.org/10.1002/ijc.31569.

    Article  CAS  PubMed  Google Scholar 

  8. Xia, J., J. Zhao, J. Shang, M. Li, Z. Zeng, J. Zhao, J. Wang, Y. Xu, and J. Xie. 2015. Increased IL-33 expression in chronic obstructive pulmonary disease. American Journal of Physiology Lung Cell Molecular Physiology 308: 619–627. https://doi.org/10.1152/ajplung.00305.2014.

    Article  CAS  Google Scholar 

  9. Zhao, J., and Y. Zhao. 2015. Interleukin-33 and its receptor in pulmonary inflammatory diseases. Critical Reviews in Immunology 35: 451–461. https://doi.org/10.1615/CritRevImmunol.2016015865.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lee, K.S., H.R. Kim, S. Kwak, K.H. Choi, J.H. Cho, Y.L. Lee, M.K. Lee, and S.D. Park. 2013. Association between elevated pleural interleukin-33 levels and tuberculous pleurisy. Annals of Laboratory Medicine 33: 45–51. https://doi.org/10.3343/alm.2013.33.1.45.

    Article  CAS  PubMed  Google Scholar 

  11. Li, D., Y. Shen, X. Fu, M. Li, T. Wang, and F. Wen. 2015. Combined detections of interleukin-33 and adenosine deaminase for diagnosis of tuberculous pleural effusion. International Journal of Clinical Experimental Pathology 8: 888–893.

    CAS  PubMed  Google Scholar 

  12. Xuan, W.X., J.C. Zhang, Q. Zhou, W.B. Yang, and L.J. Ma. 2014. IL-33 levels differentiate tuberculous pleurisy from malignant pleural effusions. Oncology Letters 8: 449–453. https://doi.org/10.3892/ol.2014.2109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kwon, B.I., S. Hong, K. Shin, E.H. Choi, J.J. Hwang, and S.H. Lee. 2013. Innate type 2 immunity is associated with eosinophilic pleural effusion in primary spontaneous pneumothorax. American Journal of Respiratory and Critical Care Medicine 188: 577–585. https://doi.org/10.1164/rccm.201302-0295OC.

    Article  CAS  PubMed  Google Scholar 

  14. Oshikawa, K., K. Yanagisawa, S. Ohno, S. Tominaga, and Y. Sugiyama. 2002. Expression of ST2 in helper T lymphocytes of malignant pleural effusions. American Journal Respiratory Critical Care Medicine 165: 1005–1009. https://doi.org/10.1164/ajrccm.165.7.2105109.

    Article  Google Scholar 

  15. Genofre, E.H., F.S. Vargas, L. Antonagelo, L.R. Teixeira, M.A.C. Vaz, E. Marchi, and V.L. Capelozzi. 2005. Ultrastructural acute features of active remodeling after chemical pleurodesis induced by silver nitrate or talc. Lung 183: 197–207. https://doi.org/10.1007/s00408-004-2536-x.

    Article  CAS  PubMed  Google Scholar 

  16. Batra, H., and V.B. Antony. 2015. Pleural mesothelial cells in pleural and lung diseases. Journal of Thoracic Diseases 7: 964–980. https://doi.org/10.3978/j.issn.2072-1439.2015.02.19.

    Article  Google Scholar 

  17. Chalubinski, M., K. Wojdan, E. Luczak, P. Gorzelak, M. Borowiec, A. Gajewski, K. Rudnicka, M. Chmiela, and M. Broncel. 2015. IL-33 and IL-4 impair barrier functions of human vascular endothelium via different mechanisms. Vascular Pharmacology 73: 57–63. https://doi.org/10.1016/j.vph.2015.07.012.

    Article  CAS  PubMed  Google Scholar 

  18. Batra, H., and V.B. Antony. 2014. The pleural mesothelium in development and disease. Frontiers in Physiology 5: 284. https://doi.org/10.3389/fphys.2014.00284.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gillibert-Duplantier, J., B. Duthey, V. Sisirak, D. Salaün, T. Gargi, O. Trédan, P. Finetti, F. Bertucci, D. Birnbaum, N. Bendriss-Vermare, and A. Badache. 2012. Gene expression profiling identifies sST2 as an effector of ErbB2-driven breast carcinoma cell motility, associated with metastasis. Oncogene. 31: 3516–3524. https://doi.org/10.1038/onc.2011.525.

    Article  CAS  PubMed  Google Scholar 

  20. Millar, N.L., C. O’Donnell, I.B. McInnes, and E. Brint. 2017. Wounds that heal and wounds that don’t—the role of the IL-33/ST2 pathway in tissue repair and tumorigenesis. Seminars in Cell Developmental Biology 61: 41–50. https://doi.org/10.1016/j.semcdb.2016.08.007.

    Article  CAS  PubMed  Google Scholar 

  21. Light, R.W., M.I. Macgregor, P.C. Luchsinger, and J.C. Ball Jr. 1972. Pleural effusions: the diagnostic separation of transudates and exudates. Annals of Internal Medicine 77: 507–513.

    Article  CAS  Google Scholar 

  22. Tsilioni, I., A.S. Filippidis, T. Kerenidi, A.V. Budanov, S.G. Zarogiannis, and K.I. Gourgoulianis. 2016. Sestrin-2 is significantly increased in malignant pleural effusions due to lung cancer and is potentially secreted by pleural mesothelial cells. Clinical Biochemistry 49: 726–728. https://doi.org/10.1016/j.clinbiochem.2016.02.002.

    Article  CAS  PubMed  Google Scholar 

  23. Miller, A.M. 2011. Role of IL-33 in inflammation and disease. Journal of Inflammation (London) 8: 22. https://doi.org/10.1186/1476-9255-8-22.

    Article  CAS  Google Scholar 

  24. Zarogiannis, S.G., I. Tsilioni, C. Hatzoglou, P.A. Molyvdas, and K.I. Gourgoulianis. 2013. Pleural fluid protein is inversely correlated with age in uncomplicated parapneumonic pleural effusions. Clinical Biochemistry 46: 378–380. https://doi.org/10.1016/j.clinbiochem.2012.11.024.

    Article  CAS  PubMed  Google Scholar 

  25. Arsenopoulou, Z.V., I. Taitzoglou, P.A. Molyvdas, K.I. Gourgoulianis, C. Hatzoglou, and S.G. Zarogiannis. 2017. Silver nanoparticles alter the permeability of sheep pleura and of sheep and human pleural mesothelial cell monolayers. Environmental Toxicology & Pharmacology 50: 212–215.

    Article  CAS  Google Scholar 

  26. Jagirdar, R.M., E. Apostolidou, P.A. Molyvdas, K.I. Gourgoulianis, C. Hatzoglou, and S.G. Zarogiannis. 2016. Influence of AQP1 on cell adhesion, migration, and tumor sphere formation in malignant pleural mesothelioma is substratum- and histological-type dependent. American Journal of Physiology Lung Cellular and Molecular Physiology 310: 489–495. https://doi.org/10.1152/ajplung.00410.2015.

    Article  Google Scholar 

  27. Mbarik, M., W. Kaabachi, B. Henidi, F.H. Sassi, and K. Hamzaoui. 2016. Soluble ST2 and IL-33: potential markers of endometriosis in the Tunisian population. Immunological Letters 166: 1–5. https://doi.org/10.1016/j.imlet.2015.05.002.

    Article  CAS  Google Scholar 

  28. Giannou, A.D., A. Marazioti, M. Spella, N.I. Kanellakis, H. Apostolopoulou, I. Psallidas, Z.M. Prijovich, M. Vreka, D.E. Zazara, I. Lillis, V. Papaleonidopoulos, C.A. Kairi, A.L. Patmanidi, I. Giopanou, N. Spiropoulou, V. Harokopos, V. Aidinis, D. Spyratos, S. Teliousi, H. Papadaki, S. Taraviras, L.A. Snyder, O. Eickelberg, D. Kardamakis, Y. Iwakura, T.B. Feyerabend, H.R. Rodewald, I. Kalomenidis, T.S. Blackwell, T. Agalioti, and G.T. Stathopopulos. 2015. Mast cells mediate malignant pleural effusion formation. Journal of Clinical Investigation. 125: 2317–2334. https://doi.org/10.1172/JCI79840.

    Article  PubMed  Google Scholar 

  29. Wei, J., J. Zhao, V. Schrott, Y. Zhang, M. Gladwin, G. Bullock, and Y. Zhao. 2015. Red blood cells store and release interleukin-33. Journal of Investigative Medicine 63: 806–810. https://doi.org/10.1097/JIM.0000000000000213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Porcel, J.M., and M. Vives. 2003. Etiology and pleural fluid characteristics of large and massive effusions. Chest 124: 978–983.

    Article  Google Scholar 

  31. Atanackovic, D., Y. Cao, J.W. Kim, S. Brandl, I. Thom, C. Faltz, Y. Hildebrandt, K. Bartels, A. de Weerth, S. Hegewisch-Becker, D.K. Hossfeld, and C. Bokemeyer. 2008. The local cytokine and chemokine milieu within malignant effusions. Tumour Biology 29: 93–104. https://doi.org/10.1159/000135689.

    Article  CAS  PubMed  Google Scholar 

  32. Fafliora, E., C. Hatzoglou, K.I. Gourgoulianis, S.G. Zarogiannis. 2016. Systematic review and meta-analysis of vascular endothelial growth factor as a biomarker for malignant pleural effusions. Physiological Reports 4: pii: e12978. https://doi.org/10.14814/phy2.12978.

    Article  Google Scholar 

  33. Milosavljevic, M.Z., J.P. Jovanovic, N.N. Pejnovic, S.L. Mitrovic, N.N. Arsenijevic, B.J. Simovic Markovic, and M.L. Lukic. 2016. Deletion of IL-33R attenuates VEGF expression and enhances necrosis in mammary carcinoma. Oncotarget 7: 18106–18115. https://doi.org/10.18632/oncotarget.7635.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Choi, Y.S., H.J. Choi, J.K. Min, B.J. Pyun, Y.S. Maeng, H. Park, J. Kim, Y.M. Kim, and Y.G. Kwon. 2009. Interleukin-33 induces angiogenesis and vascular permeability through ST2/TRAF6-mediatedendothelial nitric oxide production. Blood 114: 3117–3126. https://doi.org/10.1182/blood-2009-02-203372.

    Article  CAS  PubMed  Google Scholar 

  35. Mutsaers, S.E. 2004. The mesothelial cell. International Journal of Biochemistry and Cell Biology 36: 9–16.

    Article  CAS  Google Scholar 

  36. Cheah, H.M., S.M. Lansley, J.F. Varano Della Vergiliana, A.L. Tan, R. Thomas, S.L. Leong, J. Creaney, and Y.C. Lee. 2017. Malignant pleural fluid from mesothelioma has potent biological activities. Respirology 22: 192–199. https://doi.org/10.1111/resp.12874.

    Article  PubMed  Google Scholar 

  37. Demyanets, S., V. Konya, S.P. Kastl, C. Kaun, S. Rauscher, A. Niessner, R. Pentz, S. Pfaffenberger, K. Rychli, C.E. Lemberger, R. de Martin, A. Heinemann, I. Huk, M. Gröger, G. Maurer, K. Huber, and J. Wojta. 2011. Interleukin-33 induces expression of adhesion molecules and inflammatory activation in human endothelial cells and in human atherosclerotic plaques. Arteriosclerosis Thrombosis Vascular Biology 31: 2080–2089. https://doi.org/10.1161/ATVBAHA.111.231431.

    Article  CAS  Google Scholar 

  38. Choi, Y.S., J.A. Park, J. Kim, S.S. Rho, H. Park, Y.M. Kim, and Y.G. Kwon. 2012. Nuclear IL-33 is a transcriptional regulator of NF-κB p65 and induces endothelial cell activation. Biochemical Biophysical Research Communications 421: 305–311. https://doi.org/10.1016/j.bbrc.2012.04.005.

    Article  CAS  PubMed  Google Scholar 

  39. Porcel, J.M. 2013. Pleural fluid biomarkers: beyond the Light criteria. Clinics in Chest Medicine 34: 27–37.

    Article  Google Scholar 

  40. Serrels, B., N. McGivern, M. Canel, A. Byron, S.C. Johnson, H.J. McSorley, N. Quinn, D. Taggart, A. Von Kreigsheim, S.M. Anderton, A. Serrels, M.C. Frame. 2017. IL-33 and ST2 mediate FAK-dependent antitumor immune evasion through transcriptional networks. Science Signaling 10: 508. pii: eaan8355. https://doi.org/10.1126/scisignal.aan8355.

    Article  Google Scholar 

  41. Oshio, T., M. Komine, H. Tsuda, S.I. Tominaga, H. Saito, S. Nakae, and M. Ohtsuki. 2017. Nuclear expression of IL-33 in epidermal keratinocytes promotes wound healing in mice. Journal of Dermatological Sciences 85: 106–114. https://doi.org/10.1016/j.jdermsci.2016.10.008.

    Article  CAS  Google Scholar 

  42. Lee, J.S., E. Seppanen, J. Patel, M.P. Rodero, and K. Khosrotehrani. 2016. ST2 receptor invalidation maintains wound inflammation, delays healing and increases fibrosis. Experimental Dermatology 25: 71–74. https://doi.org/10.1111/exd.12833.

    Article  PubMed  Google Scholar 

  43. Sedhom, M.A., M. Pichery, J.R. Murdoch, B. Foligné, N. Ortega, S. Normand, K. Mertz, D. Sanmugalingam, L. Brault, T. Grandjean, E. Lefrancais, P.G. Fallon, V. Quesniaux, L. Peyrin-Biroulet, G. Cathomas, T. Junt, M. Chamaillard, J.P. Girard, and B. Ryffel. 2013. Neutralisation of the interleukin-33/ST2 pathway ameliorates experimental colitis through enhancement of mucosal healing in mice. Gut 62: 1714–1723. https://doi.org/10.1136/gutjnl-2011-301785.

    Article  CAS  PubMed  Google Scholar 

  44. Chen, S.F., S. Nieh, S.W. Jao, M.Z. Wu, C.L. Liu, Y.C. Chang, and Y.S. Lin. 2013. The paracrine effect of cancer-associated fibroblast-induced interleukin-33 regulates the invasiveness of head and neck squamous cell carcinoma. Journal of Pathology 231: 180–189. https://doi.org/10.1002/path.4226.

    Article  CAS  PubMed  Google Scholar 

  45. Fang, K.M., C.S. Yang, T.C. Lin, T.C. Chan, and S.F. Tzeng. 2014. Induced interleukin-33 expression enhances the tumorigenic activity of rat glioma cells. Neuro-Oncology 16: 552–566. https://doi.org/10.1093/neuonc/not234.

    Article  CAS  PubMed  Google Scholar 

  46. Liu, J., J.X. Shen, J.L. Hu, W.H. Huang, and G.J. Zhang. 2014. Significance of interleukin-33 and its related cytokines in patients with breast cancers. Frontiers in Immunology 5: 141. https://doi.org/10.3389/fimmu.2014.00141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yu, X.X., Z. Hu, X. Shen, L.Y. Dong, W.Z. Zhou, and W.H. Hu. 2015. IL-33 promotes gastric cancer cell invasion and migration via ST2-ERK1/2 pathway. Digestive Diseases and Sciences 60: 1265–1272. https://doi.org/10.1007/s10620-014-3463-1.

    Article  CAS  PubMed  Google Scholar 

  48. Liu, X., L. Zhu, X. Lu, H. Bian, X. Wu, W. Yang, and Q. Qin. 2014. IL-33/ST2 pathway contributes to metastasis of human colorectal cancer. Biochemical Biophysical Research Communications 453: 486–492. https://doi.org/10.1016/j.bbrc.2014.09.106.

    Article  CAS  PubMed  Google Scholar 

  49. Alves-Filho, J.C., F. Sônego, F.O. Souto, A. Freitas, W.A.Jr. Verri, M. Auxiliadora-Martins, A. Basile-Filho, A.N. McKenzie, D. Xu, F.Q. Cunha, and F.Y. Liew. 2010. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nature Medicine 16: 708–712. https://doi.org/10.1038/nm.2156.

    Article  CAS  PubMed  Google Scholar 

  50. Vavougios, G., T. Kerenidi, I. Tsilioni, S.G. Zarogiannis, and K.I. Gourgoulianis. 2015. Pleural effusion levels of DJ-1 are increased in elderly lung cancer patients with malignant pleural effusions. Redox Reports 20: 254–258. https://doi.org/10.1179/1351000215Y.0000000023.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotirios G. Zarogiannis.

Ethics declarations

All procedures performed involving human participants were in accordance with the ethical standards of the University Hospital of Larissa Ethical Committee and written informed consent was obtained from all individual patients participating in the study.

Conflict of Interest

The authors have no conflict of interests to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotsiou, O.S., Jagirdar, R.M., Papazoglou, E.D. et al. Pleural Effusion IL-33/sST2 Levels and Effects of Low and High IL-33/sST2 Levels on Human Mesothelial Cell Adhesion and Migration. Inflammation 42, 2072–2085 (2019). https://doi.org/10.1007/s10753-019-01070-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-019-01070-6

KEY WORDS

Navigation