Skip to main content
Log in

Effect of 50-Hz Magnetic Fields on Serum IL-1β and IL-23 and Expression of BLIMP-1, XBP-1, and IRF-4

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Investigations demonstrated that magnetic fields (MFs) change cytokine production and expression of some immune system genes. This alteration can affect the immune system function and may lead to some diseases. Therefore, this study investigated two important inflammatory cytokines, i.e., IL-1β and IL-23 at two phases of pre- and post-immunization of the immune system. In addition, the expressions of three important genes in the humoral immunity, i.e., B lymphocyte-induced maturation protein-1 (BLIMP-1), X-box-binding protein-1 (XBP-1), and interferon regulatory factor-4 (IRF-4) were evaluated at post-immunization phase. Eighty adult male rats were divided into four experimental groups and a control. The experimental groups were exposed to 50 -Hz MFs with magnetic flux densities of 1, 100, 500, and 2000 μT, 2 h/day for 2 months. The animals were injected by human serum albumin (100 μg/rat) on days 31, 44, and 58 of exposure. The cytokine levels in serum were measured with enzyme-linked immunosorbent assay (ELISA), and the expression of genes was evaluated with reverse transcription quantitative polymerase chain reaction (RT-qPCR). Serum IL-1β was decreased at pre-immunization phase after exposure to 1 and 100 μT of 50-Hz MFs. In contrast, serum IL-23 was increased at post-immunization phase in 100 μT group. No change was observed in serum IL-1β and IL-23 in each group at pre-immunization phase compared with post-immunization. Furthermore, exposure to 100 μT downregulated expression of BLIMP-1, XBP-1, and IRF-4. In conclusion, exposure to 50-Hz MFs may decrease inflammation at short time and increase it at longer time exposures. In addition, 50-Hz MF exposure may decrease the humoral immune responses. It seems that 50-Hz MFs cause more alteration in immune system function at lower densities (100 μT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cheng, K., Zhou, X.G., Zeng, G.Y., Zhao, T., Su, X.M., Ren, D.Q., Zhang, W.B., and H. C. Wang. 2006. Effects of serum immune globulin induced by pulsed-electromagnetic wave on rats. Ceem' 2006: Asia-Pacific Conference on Environmental Electromagnetics, Vols 1 and 2, Proceedings:95-+.

  2. Cocco, Claudia, Fabio Morandi, and Irma Airoldi. 2011. Interleukin-27 and interleukin-23 modulate human plasmacell functions. Journal of Leukocyte Biology 89: 729–734.

    Article  CAS  PubMed  Google Scholar 

  3. Croxford, Andrew L., Paulina Kulig, and Burkhard Becher. 2014. IL-12 and IL-23 in health and disease. Cytokine & Growth Factor Reviews. 25: 415–421.

    Article  CAS  Google Scholar 

  4. El-Behi, Mohamed, Bogoljub Ciric, and Hong Dai. 2011. The encephalitogenicity of TH17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nature Immunology 12 (6): 568–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hashish, A.H., M.A. El-Missiry, H.I. Abdelkader, and R.H. Abou-Saleh. 2008. Assessment of biological changes of continuous whole body exposure to static magnetic field and extremely low frequency electromagnetic fields in mice. Ecotoxicology and Environmental Safety 71 (3): 895–902. https://doi.org/10.1016/j.ecoenv.2007.10.002.

    Article  CAS  PubMed  Google Scholar 

  6. Hefeneider, S.H., S.L. McCoy, F.A. Hausman, H.L. Christensen, D. Takahashi, N. Perrin, T.D. Bracken, K.Y. Shin, and A.S. Hall. 2001. Long-term effects of 60-Hz electric vs. magnetic fields on IL-1 and IL-2 activity in sheep. Bioelectromagnetics 22 (3): 170–177. https://doi.org/10.1002/Bem.35.

    Article  CAS  PubMed  Google Scholar 

  7. Honma, K., H. Udono, T. Kohno, K. Yamamoto, A. Ogawa, T. Takemori, A. Kumatori, S. Suzuki, T. Matsuyama, and K. Yui. 2005. Interferon regulatory factor 4 negatively regulates the production of proinflammatory cytokines by macrophages in response to LPS. Proceedings of the National Academy of Sciences of the United States of America 102 (44): 16001–16006. https://doi.org/10.1073/pnas.0504226102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jamilloux, Y., E. Bourdonnay, M. Gerfaud-Valentin, B.F. Py, L. Lefeuvre, T. Barba, C. Broussolle, T. Henry, and P. Seve. 2018. Interleukin-1, inflammasome and autoinflammatory diseases. Revue de Medecine Interne 39 (4): 233–239. https://doi.org/10.1016/j.revmed.2016.07.007.

    Article  CAS  PubMed  Google Scholar 

  9. Kallies, A., J. Hasbold, K. Fairfax, C. Pridans, D. Emslie, B.S. McKenzie, A.M. Lew, L.M. Corcoran, P.D. Hodgkin, D.M. Tarlinton, and S.L. Nutt. 2007. Initiation of plasma-cell differentiation is independent of the transcription factor Blimp-1. Immunity 26 (5): 555–566. https://doi.org/10.1016/j.immuni.2007.04.007.

    Article  CAS  PubMed  Google Scholar 

  10. Kim, S.J. 2015. Immunological function of Blimp-1 in dendritic cells and relevance to autoimmune diseases. Immunologic Research 63 (1–3): 113–120. https://doi.org/10.1007/s12026-015-8694-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim, S.J., J. Goldstein, K. Dorso, M. Merad, L. Mayer, J.M. Crawford, P.K. Gregersen, and B. Diamond. 2014. Expression of Blimp-1 in dendritic cells modulates the innate inflammatory response in dextran sodium sulfate-induced colitis. Molecular Medicine 20: 707–719. https://doi.org/10.2119/molmed.2014.00231.

    Article  Google Scholar 

  12. Kleijn, S., G. Ferwerda, M. Wiese, J. Trentelman, J. Cuppen, T. Kozicz, L. Jager, P.W. Hermans, and B.M. Verburg-van Kemenade. 2016. A short-term extremely low frequency electromagnetic field exposure increases circulating leukocyte numbers and affects HPA-axis signaling in mice. Bioelectromagnetics 37 (7): 433–443. https://doi.org/10.1002/bem.21998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, D.K., H. Chen, J.R. Ferber, R. Odouli, and C. Quesenberry. 2017. Exposure to magnetic field non-ionizing radiation and the risk of miscarriage: A prospective cohort study. Scientific Reports 7: 17541. https://doi.org/10.1038/S41598-017-16623-8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Luo, X., S.J. Jia, R.Y. Li, P. Gao, and Y.W. Zhang. 2016. Occupational exposure to 50 Hz magnetic fields does not Alter responses of inflammatory genes and activation of splenic lymphocytes in mice. International Journal of Occupational Medicine and Environmental Health 29 (2): 277–291.

    Article  PubMed  Google Scholar 

  15. Mahaki, H., H. Tanzadehpanah, N. Jabarivasal, K. Sardanian, and A. Zamani. 2018. A review on the effects of extremely low frequency electromagnetic field (ELF-EMF) on cytokines of innate and adaptive immunity. Electromagnetic Biology and Medicine 38: 1–12. https://doi.org/10.1080/15368378.2018.1545668.

    Article  CAS  Google Scholar 

  16. Mahdavinejad, L., M. Alahgholi-Hajibehzad, M.M. Eftekharian, Z. Zaerieghane, I. Salehi, M. Hajilooi, H. Mahaki, and A. Zamani. 2018. Extremely low frequency electromagnetic fields decrease serum levels of interleukin-17, transforming growth factor-beta and downregulate Foxp3 expression in the spleen. Journal of Interferon and Cytokine Research 38 (10): 457–462. https://doi.org/10.1089/jir.2018.0048.

    Article  CAS  PubMed  Google Scholar 

  17. Moorlag, S.J.C.F.M., R.J. Roring, L.A.B. Joosten, and M.G. Netea. 2018. The role of the interleukin-1 family in trained immunity. Immunological Reviews 281 (1): 28–39. https://doi.org/10.1111/imr.12617.

    Article  CAS  PubMed  Google Scholar 

  18. Nakae, Susumu, Masahide Asano, and Reiko Horai. 2001. IL-1 enhances T cell-dependent antibody production through induction of CD40 ligand and OX40 on T cells. The Journal of Immunology 167: 90–97.

    Article  CAS  PubMed  Google Scholar 

  19. Nutt, S.L., P.D. Hodgkin, D.M. Tarlinton, and L.M. Corcoran. 2015. The generation of antibody-secreting plasma cells. Nature Reviews Immunology 15 (3): 160–171. https://doi.org/10.1038/nri3795.

    Article  CAS  PubMed  Google Scholar 

  20. Ochiai, K., M. Maienschein-Cline, G. Simonetti, J.J. Chen, R. Rosenthal, R. Brink, A.S. Chong, et al. 2013. Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4. Immunity 38 (5): 918–929. https://doi.org/10.1016/j.immuni.2013.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pesce, M., A. Patruno, L. Speranza, and M. Reale. 2013. Extremely low frequency electromagnetic field and wound healing: Implication of cytokines as biological mediators. European Cytokine Network 24 (1): 1–10. https://doi.org/10.1684/ecn.2013.0332.

    Article  CAS  PubMed  Google Scholar 

  22. Pham-Ledard, A., M. Prochazkova-Carlotti, E. Laharanne, B. Vergier, T. Jouary, M. Beylot-Barry, and J.P. Merlio. 2010. IRF4 gene rearrangements define a subgroup of CD30-positive cutaneous T-cell lymphoma: A study of 54 cases. Journal of Investigative Dermatology 130 (3): 816–825. https://doi.org/10.1038/jid.2009.314.

    Article  CAS  PubMed  Google Scholar 

  23. Rohde, C.H., E.M. Taylor, A. Alonso, J.A. Ascherman, K.L. Hardy, and A.A. Pilla. 2015. Pulsed electromagnetic fields reduce postoperative interleukin-1beta, pain, and inflammation: A double-blind, placebo-controlled study in TRAM flap breast reconstruction patients. Plastic and Reconstructive Surgery 135 (5): 808e–817e. https://doi.org/10.1097/prs.0000000000001152.

    Article  CAS  PubMed  Google Scholar 

  24. Ross, C.L., and B.S. Harrison. 2013. The use of magnetic field for the reduction of inflammation: A review of the history and therapeutic results. Alternative Therapies in Health and Medicine 19 (2): 47–54.

    PubMed  Google Scholar 

  25. Salehi, I., K.G. Sani, and A. Zamani. 2013. Exposure of rats to extremely low-frequency electromagnetic fields (ELF-EMF) alters cytokines production. Electromagnetic Biology and Medicine 32 (1): 1–8. https://doi.org/10.3109/15368378.2012.692343.

    Article  CAS  PubMed  Google Scholar 

  26. Schmittgen, Thomas D., and Kenneth J. Livak. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3 (6): 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  27. Schuz, J., C. Dasenbrock, P. Ravazzani, M. Roosli, P. Schar, P.L. Bounds, F. Erdmann, et al. 2016. Extremely low-frequency magnetic fields and risk of childhood leukemia: A risk assessment by the ARIMMORA consortium. Bioelectromagnetics 37 (3): 183–189. https://doi.org/10.1002/bem.21963.

    Article  PubMed  Google Scholar 

  28. Selmaoui, B., J. Lambrozo, L. Sackett-Lundeen, E. Haus, and Y. Touitou. 2011. Acute exposure to 50-Hz magnetic fields increases Interleukin-6 in young healthy men. Journal of Clinical Immunology 31 (6): 1105–1111. https://doi.org/10.1007/s10875-011-9558-y.

    Article  CAS  PubMed  Google Scholar 

  29. Shaffer, A.L., M. Shapiro-Shelef, N.N. Iwakoshi, A.H. Lee, S.B. Qian, H. Zhao, X. Yu, L. Yang, B.K. Tan, A. Rosenwald, E.M. Hurt, E. Petroulakis, N. Sonenberg, J.W. Yewdell, K. Calame, L.H. Glimcher, and L.M. Staudt. 2004. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21 (1): 81–93. https://doi.org/10.1016/j.immuni.2004.06.010.

    Article  CAS  PubMed  Google Scholar 

  30. Shahriari, Shahriar, Aliasghar Rezaei, Seyed Mohsen Jalalzadeh, Khosro Mani, and Alireza Zamani. 2011. Effect of ibuprofen on IL-1beta, TNF-alpha and PGE2 levels in periapical exudates: A double blinded clinical trial. Iranian Journal of Immunology 8: 176–182.

    CAS  PubMed  Google Scholar 

  31. Shapiro-Shelef, M., and K. Calame. 2005. Regulation of plasma-cell development. Nature Reviews Immunology 5 (3): 230–242. https://doi.org/10.1038/nri1572.

    Article  CAS  PubMed  Google Scholar 

  32. Sobhanifard, M., M.M. Eftekharian, G. Solgi, S. Nikzad, I. Salehi, K. Ghazikhanlou Sani, M. Ganji, and A. Zamani. 2018. Effect of extremely low frequency electromagnetic fields on expression of T-bet and GATA-3 genes and serum interferon-gamma and interleukin-4. Journal of Interferon & Cytokine Research 39: 125–131. https://doi.org/10.1089/jir.2018.0105.

    Article  CAS  Google Scholar 

  33. Stankiewicz, A.R., G. Lachapelle, C.P.Z. Foo, S.M. Radicioni, and D.D. Mosser. 2005. Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. Journal of Biological Chemistry 280 (46): 38729–38739. https://doi.org/10.1074/jbc.M509497200.

    Article  CAS  PubMed  Google Scholar 

  34. Tenorio, B.M., M.B.A. Ferreira, G.C. Jimenez, R.N. de Morais, C.A. Peixoto, R.D. Nogueira, and V.A. da Silva. 2014. Extremely low-frequency magnetic fields can impair spermatogenesis recovery after reversible testicular damage induced by heat. Electromagnetic Biology and Medicine 33 (2): 139–146. https://doi.org/10.3109/15368378.2013.795156.

    Article  PubMed  Google Scholar 

  35. Wilson, J.W., J. Haines, Z. Sienkiewicz, and Y.E. Dubrova. 2015. The effects of extremely low frequency magnetic fields on mutation induction in mice. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis 773: 22–26. https://doi.org/10.1016/j.mrfmmm.2015.01.014.

    Article  CAS  PubMed  Google Scholar 

  36. Xu, M., and I. Mizoguchi. 2010. Regulation of antitumor immune responses by the IL-12 family cytokines, IL-12, IL-23, and IL-27. Clinical and Developmental Immunology 1–9.

  37. Zamani, Alireza, Jalil Tavakkol Afshari, and Mohammad Yousef Alikhani. 2006. Molecular cloning and expression of human gamma interferon (IFN-γ) full cDNA in Chinese Hamster Ovary (CHO) cells. Iranian Journal of Immunology 3 (1): 1.

    Google Scholar 

  38. Zamani, A., I. Salehi, and M. Alahgholi-Hajibehzad. 2017. Moderate exercise enhances the production of interferon-gamma and interleukin-12 in peripheral blood mononuclear cells. Immune Network 17 (3): 186–191. https://doi.org/10.4110/in.2017.17.3.186.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zannella, S. 1997. Biological effects of magnetic fields. Published Version from CERN 15 (29): 375–386. https://doi.org/10.5170/CERN-1998-005.375.

    Article  Google Scholar 

  40. Zeni, O., M. Simko, M.R. Scarfi, and M.O. Mattsson. 2017. Cellular response to ELF-MF and heat: Evidence for a common involvement of heat shock proteins? Frontiers in Public Health 5. https://doi.org/10.3389/Fpubh.2017.00280.

Download references

Acknowledgments

The authors would like to express their gratefulness to the staff of the Immunology Department and Research Center for Molecular Medicine (Hamadan Iran) for their valuable assistance.

Funding

The study was funded by Vice-chancellor for Research and Technology, Hamadan University of Medical Sciences (No. 9510146109), Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Zamani.

Ethics declarations

All the protocols of the study were approved by Committee of Ethics for Hamadan University of Medical Sciences, Hamadan, Iran (Code: IR.UMSHA.REC.1396.96)

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molaei, S., Alahgholi-Hajibehzad, M., Gholamian-Hamadan, M. et al. Effect of 50-Hz Magnetic Fields on Serum IL-1β and IL-23 and Expression of BLIMP-1, XBP-1, and IRF-4. Inflammation 42, 1800–1807 (2019). https://doi.org/10.1007/s10753-019-01042-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-019-01042-w

KEY WORDS

Navigation