Skip to main content

Advertisement

Log in

Garcinol Suppresses IL-1β-Induced Chondrocyte Inflammation and Osteoarthritis via Inhibition of the NF-κB Signaling Pathway

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

A Correction to this article was published on 15 June 2020

This article has been updated

Abstract

Osteoarthritis (OA), which is characterized as a common degenerative joint disease, is presently the most prevalent chronic degenerative joint disease. Accumulating evidence has shown a biological function for Garcinol in a variety of diseases; however, whether it could be used to treat OA remains unclear. In this study, we explored the protective effects of garcinol on the progression of OA and explored the underlying mechanism. In vitro, garcinol reduced the expression of pro-inflammatory cytokines, such as IL-6 and tumor necrosis factor alpha (TNF-α). It also decreased the expression of inducible nitric oxide synthase (iNOS), as well as cyclooxygenase-2 (COX-2). Furthermore, garcinol inhibited the expression of thrombospondin motifs 5(ADAMTS5) and metalloproteinase (MMPs), both of which regulate extracellular matrix degradation. These changes could be attributed to garcinol-related suppression of the IL-1β-induced NF-κB signaling pathway. Moreover, we investigated the protective effects of garcinol on the surgical destabilization of the medial meniscus (DMM) of the mouse, an in vivo model of OA. Taken together, our data suggest garcinol as a potential future agent for the treatment of OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 15 June 2020

    The original version of this article contained mistakes, and the authors would like to correct them.

References

  1. Abramson, S.B., and Y. Yazici. 2006. Biologics in development for rheumatoid arthritis: Relevance to osteoarthritis. Advanced Drug Delivery Reviews 58 (2): 212–225. https://doi.org/10.1016/j.addr.2006.01.008.

    Article  CAS  PubMed  Google Scholar 

  2. Balasubramanyam, K., M. Altaf, R.A. Varier, V. Swaminathan, A. Ravindran, P.P. Sadhale, and T.K. Kundu. 2004. Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. The Journal of Biological Chemistry 279 (32): 33716–33726. https://doi.org/10.1074/jbc.M402839200.

    Article  CAS  PubMed  Google Scholar 

  3. Chabane, N., N. Zayed, H. Afif, L. Mfuna-Endam, M. Benderdour, C. Boileau, J. Martel-Pelletier, J.P. Pelletier, N. Duval, and H. Fahmi. 2008. Histone deacetylase inhibitors suppress interleukin-1β-induced nitric oxide and prostaglandin E2 production in human chondrocytes. Osteoarthritis and Cartilage 16 (10): 1267–1274. https://doi.org/10.1016/j.joca.2008.03.009.

    Article  CAS  PubMed  Google Scholar 

  4. Chaganti, R.K., E. Purdue, T.P. Sculco, and L.A. Mandl. 2014. Elevation of serum tumor necrosis factor α in patients with periprosthetic osteolysis: A case-control study. Clinical Orthopaedics and Related Research® 472 (2): 584–589. https://doi.org/10.1007/s11999-013-3235-9.

    Article  Google Scholar 

  5. Chao, P.-Z., M.-S. Hsieh, C.-W. Cheng, Y.-F. Lin, and C.-H. Chen. 2011. Regulation of MMP-3 expression and secretion by the chemokine eotaxin-1 in human chondrocytes. Journal of Biomedical Science 18 (1): 86. https://doi.org/10.1186/1423-0127-18-86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chatterjee, A., T. Yasmin, D. Bagchi, and S.J. Stohs. 2003. The bactericidal effects of Lactobacillus acidophilus, garcinol and Protykin® compared to clarithromycin, on Helicobacter pylori. Molecular and Cellular Biochemistry 243 (1): 29–35. https://doi.org/10.1023/A:1021649427988.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, D., J. Shen, W. Zhao, T. Wang, L. Han, J.L. Hamilton, and H.J. Im. 2017. Osteoarthritis: Toward a comprehensive understanding of pathological mechanism. Bone Res 5: 16044. https://doi.org/10.1038/boneres.2016.44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, J., Y.-T. Gu, J.-J. Xie, C.-C. Wu, J. Xuan, W.-J. Guo, Y.Z. Yan, L. Chen, Y.S. Wu, X.L. Zhang, J. Xiao, and X.-Y. Wang. 2018. Gastrodin reduces IL-1β-induced apoptosis, inflammation, and matrix catabolism in osteoarthritis chondrocytes and attenuates rat cartilage degeneration in vivo. Biomedicine & Pharmacotherapy 97: 642–651. https://doi.org/10.1016/j.biopha.2017.10.067.

    Article  CAS  Google Scholar 

  9. Chevalier, X., T. Conrozier, and P. Richette. 2011. Desperately looking for the right target in osteoarthritis: The anti-IL-1 strategy. Arthritis Research & Therapy 13 (4): 124. https://doi.org/10.1186/ar3436.

    Article  Google Scholar 

  10. da Costa, B.R., S. Reichenbach, N. Keller, L. Nartey, S. Wandel, P. Jüni, and S. Trelle. 2017. Effectiveness of non-steroidal anti-inflammatory drugs for the treatment of pain in knee and hip osteoarthritis: A network meta-analysis. The Lancet 390 (10090): e21–e33. https://doi.org/10.1016/S0140-6736(17)31744-0.

    Article  Google Scholar 

  11. Dai, L., X. Zhang, X. Hu, C. Zhou, and Y. Ao. 2012. Silencing of microRNA-101 prevents IL-1β-induced extracellular matrix degradation in chondrocytes. Arthritis Research & Therapy 14 (6): R268. https://doi.org/10.1186/ar4114.

    Article  CAS  Google Scholar 

  12. de Jong, R.C.M., M.M. Ewing, M.R. de Vries, J.C. Karper, A.J.N.M. Bastiaansen, H.A.B. Peters, F. Baghana, P.J. van den Elsen, C. Gongora, J.W. Jukema, and P.H.A. Quax. 2017. The epigenetic factor PCAF regulates vascular inflammation and is essential for intimal hyperplasia development. PLoS One 12 (10): e0185820.

    Article  Google Scholar 

  13. Eymard, F., A. Pigenet, D. Citadelle, C.-H. Flouzat-Lachaniette, A. Poignard, C. Benelli, F. Berenbaum, X. Chevalier, and X. Houard. 2014. Induction of an inflammatory and prodegradative phenotype in autologous fibroblast-like synoviocytes by the infrapatellar fat pad from patients with knee osteoarthritis. Arthritis & Rheumatology 66 (8): 2165–2174. https://doi.org/10.1002/art.38657.

    Article  CAS  Google Scholar 

  14. Gaonkar, R.H., S. Ganguly, S. Dewanjee, S. Sinha, A. Gupta, S. Ganguly, D. Chattopadhyay, and M. Chatterjee Debnath. 2017. Garcinol loaded vitamin E TPGS emulsified PLGA nanoparticles: Preparation, physicochemical characterization, in vitro and in vivo studies. Scientific Reports 7 (1): 530. https://doi.org/10.1038/s41598-017-00696-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Glasson, S.S., T.J. Blanchet, and E.A. Morris. 2007. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthritis and Cartilage 15 (9): 1061–1069. https://doi.org/10.1016/j.joca.2007.03.006.

    Article  CAS  PubMed  Google Scholar 

  16. Glyn-Jones, S., A.J.R. Palmer, R. Agricola, A.J. Price, T.L. Vincent, H. Weinans, and A.J. Carr. 2015. Osteoarthritis. The Lancet 386 (9991): 376–387. https://doi.org/10.1016/S0140-6736(14)60802-3.

    Article  CAS  Google Scholar 

  17. Wang, Y., M.L. Tsai, L.Y. Chiou, C.T. Ho, and M.H. Pan. 2015. Antitumor activity of garcinol in human prostate cancer cells and xenograft mice. Journal of Agricultural and Food Chemistry 63 (41): 9047–9052.

    Article  CAS  Google Scholar 

  18. Hsu, C.-L., Y.-J. Lin, C.-T. Ho, and G.-C. Yen. 2013. The inhibitory effect of pterostilbene on inflammatory responses during the interaction of 3T3-L1 adipocytes and RAW 264.7 macrophages. Journal of Agricultural and Food Chemistry 61 (3): 602–610. https://doi.org/10.1021/jf304487v.

    Article  CAS  PubMed  Google Scholar 

  19. Huang, W.-C., K.-T. Kuo, B.O. Adebayo, C.-H. Wang, Y.-J. Chen, K. Jin, T.H. Tsai, and C.-T. Yeh. 2018. Garcinol inhibits cancer stem cell-like phenotype via suppression of the Wnt/β-catenin/STAT3 axis signalling pathway in human non-small cell lung carcinomas. The Journal of Nutritional Biochemistry 54: 140–150. https://doi.org/10.1016/j.jnutbio.2017.12.008.

    Article  CAS  PubMed  Google Scholar 

  20. Jia, Y., J. Jiang, X. Lu, T. Zhang, K. Zhao, W. Han, W. Yang, and Y. Qian. 2018. Garcinol suppresses RANKL-induced osteoclastogenesis and its underlying mechanism. Journal of Cellular Physiology 0 (0). https://doi.org/10.1002/jcp.27511.

  21. Jia, Y., J. Jiang, X. Lu, T. Zhang, K. Zhao, W. Han, W. Yang, and Y. Qian. 2019. Garcinol suppresses RANKL-induced osteoclastogenesis and its underlying mechanism. Journal of Cellular Physiology 234 (5): 7498–7509.

    Article  CAS  Google Scholar 

  22. Jianru, W., M. Dessislava, D. Greg Anderson, Zhaomin Zheng, Irving M. Shapiro, and Makarand V. Risbud. 2011. TNF-α and IL-1β promote a disintegrin-like and metalloprotease with thrombospondin type I motif-5-mediated aggrecan degradation through syndecan-4 in intervertebral disc. Journal of Biological Chemistry 286 (46): 39738–39749.

    Article  Google Scholar 

  23. Kuno, K., Okada, Y., Kawashima, H., Nakamura, H., Miyasaka, M., Ohno, H., and Matsushima, K. ADAMTS-1 cleaves a cartilage proteoglycan, aggrecan. FEBS Letters 478 (3): 241–245. https://doi.org/10.1016/s0014-5793(00)01854-8.

  24. Liao, C.-H., C.-T. Ho, and J.-K. Lin. 2005. Effects of garcinol on free radical generation and NO production in embryonic rat cortical neurons and astrocytes. Biochemical and Biophysical Research Communications 329 (4): 1306–1314. https://doi.org/10.1016/j.bbrc.2005.02.110.

    Article  CAS  PubMed  Google Scholar 

  25. Lichtenberger, L.M., Y. Zhou, E.J. Dial, and R.M. Raphael. 2010. NSAID injury to the gastrointestinal tract: Evidence that NSAIDs interact with phospholipids to weaken the hydrophobic surface barrier and induce the formation of unstable pores in membranes. Journal of Pharmacy and Pharmacology 58 (11): 1421–1428. https://doi.org/10.1211/jpp.58.10.0001.

    Article  Google Scholar 

  26. Loeser, R.F. 2009. Aging and osteoarthritis: The role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthritis and Cartilage 17 (8): 971–979. https://doi.org/10.1016/j.joca.2009.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lu, C., Y. Li, S. Hu, Y. Cai, Z. Yang, and K. Peng. 2018. Scoparone prevents IL-1β-induced inflammatory response in human osteoarthritis chondrocytes through the PI3K/Akt/NF-κB pathway. Biomedicine & Pharmacotherapy 106: 1169–1174. https://doi.org/10.1016/j.biopha.2018.07.062.

    Article  CAS  Google Scholar 

  28. Moos, V., M. Rudwaleit, V. Herzog, K. Höhlig, J. Sieper, and B. Müller. 2001. Association of genotypes affecting the expression of interleukin-1β or interleukin-1 receptor antagonist with osteoarthritis. Arthritis and Rheumatism 43 (11): 2417–2422. https://doi.org/10.1002/1529-0131(200011)43:11<2417::AID-ANR7>3.0.CO;2-R.

    Article  Google Scholar 

  29. Nasi, S., Ea, H.-K., So, A., & Busso, N. (2017). Revisiting the role of interleukin-1 pathway in osteoarthritis: Interleukin-1α and -1β, and NLRP3 inflammasome are not involved in the pathological features of the murine Menisectomy model of osteoarthritis. 8(282). https://doi.org/10.3389/fphar.2017.00282.

  30. Priyanka, V., and D. Krishna. 2011. ADAMTS-4 and ADAMTS-5: Key enzymes in osteoarthritis. Journal of Cellular Biochemistry 112 (12): 3507–3514.

    Article  Google Scholar 

  31. Roman-Blas, J.A., and S.A. Jimenez. 2006. NF-κB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis and Cartilage 14 (9): 839–848. https://doi.org/10.1016/j.joca.2006.04.008.

    Article  CAS  PubMed  Google Scholar 

  32. Ruo-Hua, S., M.D. Tortorella, M. Anne-Marie, J.T. Alston, Y. Zhiyong, E.C. Arner, and D.W. Griggs. 2014. Aggrecan degradation in human articular cartilage explants is mediated by both ADAMTS-4 and ADAMTS-5. Arthritis & Rheumatology 56 (2): 575–585.

    Google Scholar 

  33. Ryu, Y. K., Park, H. Y., Go, J., Kim, Y. H., Hwang, J. H., Choi, D. H., . . . Lee, C. H. J. J. o. N. T. (2018). Effects of histone acetyltransferase inhibitors on l -DOPA-induced dyskinesia in a murine model of Parkinson’s disease. 125(2), 1–13.

  34. Sandell, L.J., X. Xing, and C. Franz. 2008. Exuberant expression of chemokine genes by adult human articular chondrocytes in response to IL-1β. Osteoarthritis and Cartilage 16 (12): 1560–1571.

    Article  CAS  Google Scholar 

  35. Sandy, J.D., C.R. Flannery, P.J. Neame, and L.S. Lohmander. 1992. The structure of aggrecan fragments in human synovial fluid. Evidence for the involvement in osteoarthritis of a novel proteinase which cleaves the Glu 373-Ala 374 bond of the interglobular domain. Journal of Clinical Investigation 36 (9): 1512–1516.

    Article  Google Scholar 

  36. Sang, S., M.-H. Pan, X. Cheng, N. Bai, R.E. Stark, R.T. Rosen, S.Y. Lin-Shiau, J.K. Lin, and C.-T. Ho. 2001. Chemical studies on antioxidant mechanism of garcinol: Analysis of radical reaction products of garcinol and their antitumor activities. Tetrahedron 57 (50): 9931–9938. https://doi.org/10.1016/S0040-4020(01)01015-8.

    Article  CAS  Google Scholar 

  37. Sethi, G., Chatterjee, S., Rajendran, P., Li, F., Shanmugam, M. K., Wong, K. F., . . . Kundu, T. K. J. M. C. (2014). Inhibition of STAT3 dimerization and acetylation by garcinol suppresses the growth of human hepatocellular carcinoma in vitro and in vivo. 13(1), 66. https://doi.org/10.1186/1476-4598-13-66

  38. Tortorella, M.D., T.C. Burn, M.A. Pratta, I. Abbaszade, J.M. Hollis, R. Liu, et al. 1999. Purification and cloning of aggrecanase-1: A member of the ADAMTS family of proteins. Science 284 (5420): 1664–1666.

    Article  CAS  Google Scholar 

  39. Tsuzaki, M., G. Guyton, W. Garrett, J.M. Archambault, W. Herzog, L. Almekinders, D. Bynum, X. Yang, and A.J. Banes. 2003. IL-1β induces COX2, MMP-1, −3 and −13, ADAMTS-4, IL-1β and IL-6 in human tendon cells. Journal of Orthopaedic Research 21 (2): 256–264. https://doi.org/10.1016/S0736-0266(02)00141-9.

    Article  CAS  PubMed  Google Scholar 

  40. Tu, S.H., Y.S. Chiou, N. Kalyanam, C.T. Ho, L.C. Chen, and M.H. Pan. 2017. Garcinol sensitizes breast cancer cells to taxol through the suppression of caspase-3/iPLA and NF-κB/Twist1 signaling pathways in a mouse 4T1 breast tumor model. Food & Function 8 (3): 1067–1079.

    Article  CAS  Google Scholar 

  41. van der Kraan, P.M., and W.B. van den Berg. 2012. Chondrocyte hypertrophy and osteoarthritis: Role in initiation and progression of cartilage degeneration? Osteoarthritis and Cartilage 20 (3): 223–232. https://doi.org/10.1016/j.joca.2011.12.003.

    Article  PubMed  Google Scholar 

  42. Wang, B., J. Chen, F.S. Santiago, M. Janes, M.M. Kavurma, B.H. Chong, J.E. Pimanda, and L.M. Khachigian. 2010. Phosphorylation and acetylation of histone H3 and autoregulation by early growth response 1 mediate interleukin 1β induction of early growth response 1 transcription. Arteriosclerosis, Thrombosis, and Vascular Biology 30 (3): 536–545. https://doi.org/10.1161/atvbaha.109.193821.

    Article  CAS  PubMed  Google Scholar 

  43. Wang, J., D. Markova, D.G. Anderson, Z. Zheng, M.S. Irving, and V.R. Makarand. 2011. TNF-α and IL-1β promote a disintegrin-like and metalloprotease with thrombospondin type I motif-5-mediated aggrecan degradation through syndecan-4 in intervertebral disc. Journal of Biological Chemistry 286 (46): 39738–39749.

    Article  CAS  Google Scholar 

  44. Wang, Y.-W., X. Zhang, C.-L. Chen, Q.-Z. Liu, J.-W. Xu, Q.-Q. Qian, et al. 2017. Protective effects of Garcinol against neuropathic pain – Evidence from in vivo and in vitro studies. Neuroscience Letters 647: 85–90. https://doi.org/10.1016/j.neulet.2017.03.015.

    Article  CAS  PubMed  Google Scholar 

  45. Wielage, R.C., J.A. Myers, R.W. Klein, and M. Happich. 2013. Cost-effectiveness analyses of osteoarthritis oral therapies: A systematic review. Applied Health Economics and Health Policy 11 (6): 593–618. https://doi.org/10.1007/s40258-013-0061-x.

    Article  PubMed  Google Scholar 

  46. Zhao, J., T. Yang, J. Ji, C. Li, and Z. Li. 2018. Garcinol exerts anti-cancer effect in human cervical cancer cells through upregulation of T-cadherin. Biomedicine Pharmacotherapie 107 (undefined): 957–966.

    Article  CAS  Google Scholar 

  47. Zhong, L., X. Huang, M. Karperien, and N.J. Post. 2016. Correlation between gene expression and osteoarthritis progression in human. International Journal of Molecular Sciences 17 (7). https://doi.org/10.3390/ijms17071126.

Download references

Funding

This study was funded by the National Natural Science Foundation of China (grant nos. 81572126 and 81871801) and the Natural Science Foundation of Zhejiang Province (grant nos. LY15H060005 and LQ16H160013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Qian.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Pang, C., Zhao, K. et al. Garcinol Suppresses IL-1β-Induced Chondrocyte Inflammation and Osteoarthritis via Inhibition of the NF-κB Signaling Pathway. Inflammation 42, 1754–1766 (2019). https://doi.org/10.1007/s10753-019-01037-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-019-01037-7

KEY WORDS

Navigation